Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087202    DOI: 10.1088/1674-1056/ab973c
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity

Y Y Wu(伍义远)1,2,3, X L Zhu(朱雪良)2,3, H Y Yang(杨恒玉)4, Z G Wang(王志光)5, Y H Li(李玉红)1, B T Wang(王保田)2,3,6
1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
3 Spallation Neutron Source Science Center, Dongguan 523808, China;
4 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
5 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
6 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

Sulfide nanocrystals and their composites have shown great potential in the thermoelectric (TE) field due to their extremely low thermal conductivity. Recently a solid and hollow metastable Au2S nanocrystalline has been successfully synthesized. Herein, we study the TE properties of this bulk Au2S by first-principles calculations and semiclassical Boltzmann transport theory, which provides the basis for its further experimental studies. Our results indicate that the highly twofold degeneracy of the bands appears at the Γ point in the Brillouin zone, resulting in a high Seebeck coefficient. Besides, Au2S exhibits an ultra-low lattice thermal conductivity ( ~0.88 W·m-1·K-1 at 700 K). At 700 K, the thermoelectric figure of merit of the optimal p-type doping is close to 1.76, which is higher than 0.8 of ZrSb at 700 K and 1.4 of PtTe at 750 K. Our work clearly demonstrates the advantages of Au2S as a TE material and would greatly inspire further experimental studies and verifications.

Keywords:  first principles calculation      thermodynamic transport properties  
Received:  30 March 2020      Revised:  26 May 2020      Accepted manuscript online: 
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11504312, 11775102, and 11805088), the National Basic Research Program of China (Grant No. 2015CB921103), China Postdoctoral Science Foundation (Grant No. 2018M641477), Guangdong Provincial Department of Science and Technology, China (Grant No. 2018A0303100013), and the Fundamental Research Funds for the Central Universities, China (Lanzhou University, Grant No. lzujbky-2018-19).

Corresponding Authors:  Y H Li, Y H Li     E-mail:;

Cite this article: 

Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田) First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity 2020 Chin. Phys. B 29 087202

[1] DiSalvo and Francis J 1999 Science 285 703
[2] He J and Tritt T M 2017 Science 357 eaak9997
[3] Sales B C 2002 Science 295 1248
[4] Bell L E 2008 Science 321 1457
[5] Li X, Liu P F, Zhao E, et al. 2020 Nat. Commun. 11 942
[6] Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G and Wang B T 2019 Nanoscale 11 19923
[7] Zhang C, de la Mata M, Li Z, Belarre F J, Arbiol J, Khor K A, Poletti D, Zhu B, Yan Q and Xiong Q 2016 Nano Energy 30 630
[8] Zhu X L, Hou C H, Zhang P, Liu P F, Xie G and Wang B T 2020 J. Phys. Chem. C 124 1812
[9] Pei Z, Wang H and Snyder G J 2012 Adv. Mater. 24 6124
[10] Tang L P, Tang L M, Geng H, Yi Y P, Wei Z, Chen K Q and Deng H X 2018 Appl. Phys. Lett. 112 012101
[11] Dun C, Hewitt C A, Li Q, Guo Y, Jiang Q, Xu J, Marcus G, Schall D C and Carroll D L 2017 Adv. Mater. 29 1702968
[12] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G 2018 Chin. Phys. B 27 035101
[13] Vineis C J, Shakouri A, Majumdar A and Kanatzidis M G 2010 Adv. Mater. 22 3970
[14] Heremans J P, Wiendlocha B and Chamoire A M 2012 Energy Environ. Sci. 5 5510
[15] Zebarjadi M, Joshi G, Zhu G, Yu B, Minnich A, Lan Y, Wang X, Dresselhaus M, Ren Z and Chen G 2011 Nano Lett. 11 2225
[16] Yu B, Zebarjadi M, Wang H, Lukas K, Wang H, Wang D, Opeil C, Dresselhaus M and Chen G and Ren Z 2012 Nano Lett. 12 2077
[17] Soni A, Shen Y, Yin M, Zhao Y, Yu L, Hu X, Dong Z, Khor K A, Dresselhaus M S and Xiong Q 2012 Nano Lett. 12 4305
[18] Mehta R J, Zhang Y, Karthik C, Singh B, Siegel R W, Borca-Tasciuc T and Ramanath G 2012 Nat. Mater. 11 233
[19] Zhu X L, Liu P F, Xie G F and Wang B T 2019 Phys. Chem. Chem. Phys. 21 10931
[20] Tarachand, Hussain S, Lalla N P, Kuo Y K, Lakhani A, Sathe V G, Deshpande U and Okram G S 2018 Phys. Chem. Chem. Phys. 20 5926
[21] Lee E, Ko J, Kim J Y, Seo W S, Choi S M, Lee K H, Shim W and Lee W 2016 J. Mater. Chem. C 4 1313
[22] Androulakis J, Lin C H, Kong H J, Uher C, Wu C I, Hogan T, Cook B A, Caillat T, Paraskevopoulos K M and Kanatzidis M G 2007 J. Am. Chem. Soc. 129 9780
[23] Peng Z, He D, Mu X, Zhou H, Li C, Ma S, Ji P, Hou W, Wei P, Zhu W, Nie X and Zhao W 2018 J. Electron. Mater. 47 3350
[24] Liufu S C, Chen L D, Yao Q and Wang C F 2007 Appl. Phys. Lett. 90 112106
[25] Mulla R and Rabinal M K 2017 Appl. Surf. Sci. 397 70
[26] Ge Z H, Zhang B P, Chen Y X, Yu Z X, Liu Y and Li J F 2011 Chem. Commun. 47 12697
[27] Li X, Hu C, Kang X, Len Q, Xi Y, Zhang K and Liu H 2013 J. Mater. Chem. A. 1 13721
[28] Zhao L, Wang X, Fei F Y, Wang J, Cheng Z, Dou S, Wang J and Snyder G J 2015 J. Mater. Chem. A. 3 9432
[29] Tarachand, Mukherjee B, Saxena M, Kuo Y K, Okram G S, Dam S, Hussain S, Lakhani A, Deshpande U and Shripathi T 2019 ACS Appl. Energy Mater. 2 6383
[30] Zheng Y, Wang S, Liu W, Yin Z, Li H, Tang X and Uher C 2014 J. Phys. D:Appl. Phys. 47 115303
[31] Tan Q, Wu C F, Sun W and Li J F 2016 Rsc Adv. 6 43985
[32] Senftle, Edward F and Wright D B 1986 Z. Naturforsch. B 41 1081
[33] Morris T, Copeland H and Szulczewski G 2002 Langmuir 18 535
[34] Ishikawa K, Isonaga T, Wakita S and Suzuki Y 1995 Solid State Ionics 79 60
[35] Dalmases M, Torruella P, Blanco-Portals J, Vidal A, Lopez-HaroJoséM, Calvino J J, S Estradé PeiróF and Figuerola A 2018 Chem. Mater 30 6893
[36] Kresse G and Furthmüller 1996 J. Phys. Rev. B 54 11169
[37] Blöchl P E 1994 Phys. Rev. B 50 17953
[38] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[39] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[40] Chaput L, Pecheur P and Scherrer H 2007 Phys. Rev. B 75 045116
[41] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[42] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[43] Suárez J A, Plata J J, Márquez A M and Sanz J F 2016 Theo. Chem. Acc 135 70
[44] Averitt R D, Sarkar D and Halas N J 1997 Phys. Rev. Lett. 78 4217
[45] Zhao L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251
[46] Ding G, Wang C, Gao G, Yao K, Dun C, Feng C, Li D and Zhang G 2018 Nanoscale 10 7077
[47] Fu C, Wu H, Liu Y, He J, Zhao X and Zhu T 2016 Adv. Sci. 3 1600035
[48] Alam Hilaal and Ramakrishna S 2013 Nano Energy 2 190
[49] Dehkordi A M, Zebarjadi M, He J and Tritt T M 2015 Mat. Sci. Eng:R 97 1
[50] Gu J, Huang L and Liu S 2019 RSC Adv. 9 36301
[51] Yuan H, Shimotani H, Ye J, Yoon S, Aliah H, Tsukazaki A, Kawasaki M and Iwasa Y 2010 J. Am. Chem. Soc. 132 18402
[52] Brixner L H 1962 J. Inorg. Nucl. Chem. 24 257
[53] Revolinsky E and Beerntsen D J 1964 Appl. Phys. 35 2086
[54] Cutler M and Mott N F 1969 Phys. Rev. 181 1336
[55] Jonson M and Mahan G D 1980 Phys. Rev. B 21 4223
[56] Liu P F, Bo T, Xu J, Yin W, Zhang J, Wang F, Eriksson O and Wang B T 2018 Phys. Rev. B 98 235426
[57] Kumar S and Schwingenschlogl U 2015 Chem. Mater. 27 1278
[58] Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Hight Walker A R and Xing H G 2014 ACS Nano 8 986
[59] Ouyang T and Hu M 2015 J. Appl. Phys. 117 245101
[60] Ouyang T, Xiao H, Tang C, Hu M and Zhong J 2016 Phys. Chem. Chem. Phys. 18 16709
[61] Lee S, Esfarjani K, Luo T, Zhou J, Tian Z and Chen G 2014 Nat. Commun. 5 3525
[62] Xi J, Long M, Tang L, Wang D and Shuai Z 2012 Nanoscale 4 4348
[63] Qiu P, Zhu Y, Qin Y, Shi X and Chen L 2016 APL Mater. 4 104805
[64] Guo Q and Luo S 2015 Funct. Mater. Lett. 08 1550028
[65] Pei Y, LaLonde A, Iwanagaa S and Snyder G J 2011 Energy Environ. Sci. 4 2085
[1] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[2] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[3] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[4] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[5] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[6] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[7] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[8] Anisotropic elastic properties and ideal uniaxial compressive strength of TiB2 from first principles calculations
Min Sun(孙敏), Chong-Yu Wang(王崇愚), Ji-Ping Liu(刘吉平). Chin. Phys. B, 2018, 27(7): 077103.
[9] Band structure of silicon and germanium thin films based on first principles
Xue-Ke Wu(吴学科), Wei-Qi Huang(黄伟其), Zhong-Mei Huang(黄忠梅), Chao-Jian Qin(秦朝建), Tai-Ge Dong(董泰阁), Gang Wang(王刚), Yan-Lin Tang(唐延林). Chin. Phys. B, 2017, 26(3): 037302.
[10] Theoretical calculations of structural, electronic, and elastic properties of CdSe1-xTex: A first principles study
M Shakil, Muhammad Zafar, Shabbir Ahmed, Muhammad Raza-ur-rehman Hashmi, M A Choudhary, T Iqbal. Chin. Phys. B, 2016, 25(7): 076104.
[11] Mobility enhancement of strained GaSb p-channel metal—oxide—semiconductor field-effect transistorswith biaxial compressive strain
Yan-Wen Chen(陈燕文), Zhen Tan(谭桢), Lian-Feng Zhao(赵连锋), Jing Wang(王敬), Yi-Zhou Liu(刘易周),Chen Si(司晨), Fang Yuan(袁方), Wen-Hui Duan(段文晖), Jun Xu(许军). Chin. Phys. B, 2016, 25(3): 038504.
[12] Silicene: from monolayer to multilayer–A concise review
Li Hui (李晖), Fu Hui-Xia (付会霞), Meng Sheng (孟胜). Chin. Phys. B, 2015, 24(8): 086102.
[13] Theoretical investigation of sulfur defects on structural, electronic, and elastic properties of ZnSe semiconductor
Muhammad Zafar, Shabbir Ahmed, M. Shakil, M. A. Choudhary, K. Mahmood. Chin. Phys. B, 2015, 24(7): 076106.
[14] Composition and temperature dependences of site occupation for Al, Cr, W, and Nb in MoSi2
Li Xiao-Ping (李小平), Sun Shun-Ping (孙顺平), Yu Yun (于赟), Wang Hong-Jin (王洪金), Jiang Yong (江勇), Yi Dan-Qing (易丹青). Chin. Phys. B, 2015, 24(12): 120502.
[15] First-principles calculations of structural, electronic, and thermodynamic properties of ZnO1-xSx alloys
Muhammad Zafar, Shabbir Ahmed, M. Shakil, M. A. Choudhary. Chin. Phys. B, 2014, 23(10): 106108.
No Suggested Reading articles found!