Special Issue:
SPECIAL TOPIC — Phononics and phonon engineering
|
SPECIAL TOPIC—Phononics and phonon engineering |
Prev
Next
|
|
|
First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity |
Y Y Wu(伍义远)1,2,3, X L Zhu(朱雪良)2,3, H Y Yang(杨恒玉)4, Z G Wang(王志光)5, Y H Li(李玉红)1, B T Wang(王保田)2,3,6 |
1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
3 Spallation Neutron Source Science Center, Dongguan 523808, China;
4 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
5 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
6 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Sulfide nanocrystals and their composites have shown great potential in the thermoelectric (TE) field due to their extremely low thermal conductivity. Recently a solid and hollow metastable Au2S nanocrystalline has been successfully synthesized. Herein, we study the TE properties of this bulk Au2S by first-principles calculations and semiclassical Boltzmann transport theory, which provides the basis for its further experimental studies. Our results indicate that the highly twofold degeneracy of the bands appears at the Γ point in the Brillouin zone, resulting in a high Seebeck coefficient. Besides, Au2S exhibits an ultra-low lattice thermal conductivity ( ~0.88 W·m-1·K-1 at 700 K). At 700 K, the thermoelectric figure of merit of the optimal p-type doping is close to 1.76, which is higher than 0.8 of ZrSb at 700 K and 1.4 of PtTe at 750 K. Our work clearly demonstrates the advantages of Au2S as a TE material and would greatly inspire further experimental studies and verifications.
|
Received: 30 March 2020
Revised: 26 May 2020
Accepted manuscript online:
|
PACS:
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
84.60.Rb
|
(Thermoelectric, electrogasdynamic and other direct energy conversion)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504312, 11775102, and 11805088), the National Basic Research Program of China (Grant No. 2015CB921103), China Postdoctoral Science Foundation (Grant No. 2018M641477), Guangdong Provincial Department of Science and Technology, China (Grant No. 2018A0303100013), and the Fundamental Research Funds for the Central Universities, China (Lanzhou University, Grant No. lzujbky-2018-19). |
Corresponding Authors:
Y H Li, Y H Li
E-mail: liyuhong@lzu.edu.cn;wangbt@ihep.ac.cn
|
Cite this article:
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田) First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity 2020 Chin. Phys. B 29 087202
|
[1] |
DiSalvo and Francis J 1999 Science 285 703
|
[2] |
He J and Tritt T M 2017 Science 357 eaak9997
|
[3] |
Sales B C 2002 Science 295 1248
|
[4] |
Bell L E 2008 Science 321 1457
|
[5] |
Li X, Liu P F, Zhao E, et al. 2020 Nat. Commun. 11 942
|
[6] |
Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G and Wang B T 2019 Nanoscale 11 19923
|
[7] |
Zhang C, de la Mata M, Li Z, Belarre F J, Arbiol J, Khor K A, Poletti D, Zhu B, Yan Q and Xiong Q 2016 Nano Energy 30 630
|
[8] |
Zhu X L, Hou C H, Zhang P, Liu P F, Xie G and Wang B T 2020 J. Phys. Chem. C 124 1812
|
[9] |
Pei Z, Wang H and Snyder G J 2012 Adv. Mater. 24 6124
|
[10] |
Tang L P, Tang L M, Geng H, Yi Y P, Wei Z, Chen K Q and Deng H X 2018 Appl. Phys. Lett. 112 012101
|
[11] |
Dun C, Hewitt C A, Li Q, Guo Y, Jiang Q, Xu J, Marcus G, Schall D C and Carroll D L 2017 Adv. Mater. 29 1702968
|
[12] |
Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G 2018 Chin. Phys. B 27 035101
|
[13] |
Vineis C J, Shakouri A, Majumdar A and Kanatzidis M G 2010 Adv. Mater. 22 3970
|
[14] |
Heremans J P, Wiendlocha B and Chamoire A M 2012 Energy Environ. Sci. 5 5510
|
[15] |
Zebarjadi M, Joshi G, Zhu G, Yu B, Minnich A, Lan Y, Wang X, Dresselhaus M, Ren Z and Chen G 2011 Nano Lett. 11 2225
|
[16] |
Yu B, Zebarjadi M, Wang H, Lukas K, Wang H, Wang D, Opeil C, Dresselhaus M and Chen G and Ren Z 2012 Nano Lett. 12 2077
|
[17] |
Soni A, Shen Y, Yin M, Zhao Y, Yu L, Hu X, Dong Z, Khor K A, Dresselhaus M S and Xiong Q 2012 Nano Lett. 12 4305
|
[18] |
Mehta R J, Zhang Y, Karthik C, Singh B, Siegel R W, Borca-Tasciuc T and Ramanath G 2012 Nat. Mater. 11 233
|
[19] |
Zhu X L, Liu P F, Xie G F and Wang B T 2019 Phys. Chem. Chem. Phys. 21 10931
|
[20] |
Tarachand, Hussain S, Lalla N P, Kuo Y K, Lakhani A, Sathe V G, Deshpande U and Okram G S 2018 Phys. Chem. Chem. Phys. 20 5926
|
[21] |
Lee E, Ko J, Kim J Y, Seo W S, Choi S M, Lee K H, Shim W and Lee W 2016 J. Mater. Chem. C 4 1313
|
[22] |
Androulakis J, Lin C H, Kong H J, Uher C, Wu C I, Hogan T, Cook B A, Caillat T, Paraskevopoulos K M and Kanatzidis M G 2007 J. Am. Chem. Soc. 129 9780
|
[23] |
Peng Z, He D, Mu X, Zhou H, Li C, Ma S, Ji P, Hou W, Wei P, Zhu W, Nie X and Zhao W 2018 J. Electron. Mater. 47 3350
|
[24] |
Liufu S C, Chen L D, Yao Q and Wang C F 2007 Appl. Phys. Lett. 90 112106
|
[25] |
Mulla R and Rabinal M K 2017 Appl. Surf. Sci. 397 70
|
[26] |
Ge Z H, Zhang B P, Chen Y X, Yu Z X, Liu Y and Li J F 2011 Chem. Commun. 47 12697
|
[27] |
Li X, Hu C, Kang X, Len Q, Xi Y, Zhang K and Liu H 2013 J. Mater. Chem. A. 1 13721
|
[28] |
Zhao L, Wang X, Fei F Y, Wang J, Cheng Z, Dou S, Wang J and Snyder G J 2015 J. Mater. Chem. A. 3 9432
|
[29] |
Tarachand, Mukherjee B, Saxena M, Kuo Y K, Okram G S, Dam S, Hussain S, Lakhani A, Deshpande U and Shripathi T 2019 ACS Appl. Energy Mater. 2 6383
|
[30] |
Zheng Y, Wang S, Liu W, Yin Z, Li H, Tang X and Uher C 2014 J. Phys. D:Appl. Phys. 47 115303
|
[31] |
Tan Q, Wu C F, Sun W and Li J F 2016 Rsc Adv. 6 43985
|
[32] |
Senftle, Edward F and Wright D B 1986 Z. Naturforsch. B 41 1081
|
[33] |
Morris T, Copeland H and Szulczewski G 2002 Langmuir 18 535
|
[34] |
Ishikawa K, Isonaga T, Wakita S and Suzuki Y 1995 Solid State Ionics 79 60
|
[35] |
Dalmases M, Torruella P, Blanco-Portals J, Vidal A, Lopez-HaroJoséM, Calvino J J, S Estradé PeiróF and Figuerola A 2018 Chem. Mater 30 6893
|
[36] |
Kresse G and Furthmüller 1996 J. Phys. Rev. B 54 11169
|
[37] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[38] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[39] |
Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
|
[40] |
Chaput L, Pecheur P and Scherrer H 2007 Phys. Rev. B 75 045116
|
[41] |
Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
|
[42] |
Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
|
[43] |
Suárez J A, Plata J J, Márquez A M and Sanz J F 2016 Theo. Chem. Acc 135 70
|
[44] |
Averitt R D, Sarkar D and Halas N J 1997 Phys. Rev. Lett. 78 4217
|
[45] |
Zhao L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251
|
[46] |
Ding G, Wang C, Gao G, Yao K, Dun C, Feng C, Li D and Zhang G 2018 Nanoscale 10 7077
|
[47] |
Fu C, Wu H, Liu Y, He J, Zhao X and Zhu T 2016 Adv. Sci. 3 1600035
|
[48] |
Alam Hilaal and Ramakrishna S 2013 Nano Energy 2 190
|
[49] |
Dehkordi A M, Zebarjadi M, He J and Tritt T M 2015 Mat. Sci. Eng:R 97 1
|
[50] |
Gu J, Huang L and Liu S 2019 RSC Adv. 9 36301
|
[51] |
Yuan H, Shimotani H, Ye J, Yoon S, Aliah H, Tsukazaki A, Kawasaki M and Iwasa Y 2010 J. Am. Chem. Soc. 132 18402
|
[52] |
Brixner L H 1962 J. Inorg. Nucl. Chem. 24 257
|
[53] |
Revolinsky E and Beerntsen D J 1964 Appl. Phys. 35 2086
|
[54] |
Cutler M and Mott N F 1969 Phys. Rev. 181 1336
|
[55] |
Jonson M and Mahan G D 1980 Phys. Rev. B 21 4223
|
[56] |
Liu P F, Bo T, Xu J, Yin W, Zhang J, Wang F, Eriksson O and Wang B T 2018 Phys. Rev. B 98 235426
|
[57] |
Kumar S and Schwingenschlogl U 2015 Chem. Mater. 27 1278
|
[58] |
Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Hight Walker A R and Xing H G 2014 ACS Nano 8 986
|
[59] |
Ouyang T and Hu M 2015 J. Appl. Phys. 117 245101
|
[60] |
Ouyang T, Xiao H, Tang C, Hu M and Zhong J 2016 Phys. Chem. Chem. Phys. 18 16709
|
[61] |
Lee S, Esfarjani K, Luo T, Zhou J, Tian Z and Chen G 2014 Nat. Commun. 5 3525
|
[62] |
Xi J, Long M, Tang L, Wang D and Shuai Z 2012 Nanoscale 4 4348
|
[63] |
Qiu P, Zhu Y, Qin Y, Shi X and Chen L 2016 APL Mater. 4 104805
|
[64] |
Guo Q and Luo S 2015 Funct. Mater. Lett. 08 1550028
|
[65] |
Pei Y, LaLonde A, Iwanagaa S and Snyder G J 2011 Energy Environ. Sci. 4 2085
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|