Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 055202    DOI: 10.1088/1674-1056/22/5/055202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition

B. Malekynia, S. S. Razavipour
Department of Physics, Gachsaran Branch, Islamic Azad University, Gachsaran 75818-63876, Iran
Abstract  The accelerated skin layer may be used to ignite solid state fuels. The detailed analyses were clarified by solving the hydrodynamic equations for nonlinear force driven plasma block ignition. In this paper, the complementary mechanisms are included for the advanced fuel ignition: external factors such as laser, compression, shock waves, and spark. The other category is created within the plasma fusion as reheating of alpha particle, the Bremsstrahlung absorption, expansion, conduction, and shock waves generated by explosions. With the new condition for the control of shock waves, the spherical deuterium-tritium fuel density should be increased to 75 times of the solid state. The threshold ignition energy flux density for the advanced fuel ignition may be obtained using temperature equations, including the ones for the density profile obtained through the continuity equation and the expansion velocity for the r≠0 layers. These thresholds are significantly reduced in comparison with the ignition thresholds at x=0 for the solid advanced fuels. The quantum correction for the collision frequency is applied in the case of the delay in ion heating. Under the shock wave condition, the spherical proton-boron and proton-lithium fuel densities should be increased to densities 120 and 180 times of the solid state. These plasma compressions are achieved through a longer duration laser pulse or X ray.
Keywords:  block ignition      advanced fuel      quantum correction shock wave  
Received:  22 October 2012      Revised:  27 December 2012      Accepted manuscript online: 
PACS:  52.38.-r (Laser-plasma interactions)  
  52.38.Dx (Laser light absorption in plasmas (collisional, parametric, etc.))  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
  52.57.-z (Laser inertial confinement)  
Fund: Project supported by the Islamic Azad University of Gachsaran Branch of Iran.
Corresponding Authors:  B. Malekynia     E-mail:  b_malekynia@iaug.ac.ir

Cite this article: 

B. Malekynia, S. S. Razavipour The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition 2013 Chin. Phys. B 22 055202

[1] Atzeni S 1995 Jpn. J. Appl. Phys. 34 1986
[2] Scheffel C, Stening R J, Hora H, Höpfl R, Martinez-Val J M, Eliezer S, Kasotakis G, Piera M and Sarris E 1997 Laser and Particle Beams 15 565
[3] Yamanaka Ch 2002 Laser and Particle Beams 20 5
[4] Hora H, Miley G H, Flippo K, Lalousis P, Castillo R, Yang X, Malekynia B and Ghoranneviss M 2011 Laser and Particle Beams 29 353
[5] Malekynia B and Razavipour S S 2012 Chin. Phys. B 21 125201
[6] Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W and Solodov A A 2007 Phys. Rev. Lett. 98 155001
[7] Nuckolls J H and Wood L 2002 CA: Lawrence Livermore National Laboratory Preprint UCRL-JC-149860
[8] Badziak J 2007 Opto-electronics Review 15 1
[9] Ban H Y, Gu Y J, Kong Q, Li Y Y, Zhu Z and Kawata S 2011 Chin. Phys. Lett. 29 035202
[10] Hora H, Miley G H, Ghoranneviss M, Malekynia B, AziziN and He X T 2010 Energy Environmental Science 3 479
[11] Ghoranneviss M, Salar Elahi A, Hora H, Miley G H, Malekynia B and Abdollahi Z 2012 Laser and Particle Beams 30 459
[12] Ghoranneviss M, Salar Elahi A, Hora H and Sari A H 2012 J. Fusion Energy
[13] Chu M S 1972 Physics of Fluids 15 413
[14] Lalousis P and Hora H 1983 Laser and Particle Beams 1 283
[15] Ray P S and Hora H 1976 Nuclear Fusion 16 535
[16] Hora H and Ray P S 1978 Zeitschrift F. Naturforschung A33 890
[17] Bethe H A 1934 Handbuch der physik 24 1 497
[18] Hora H 1981 Nuovo Cimento 64B 1
[19] Malekynia B, Ghoranneviss M, Hora H and Miley G H 2009 J. Fusion Energ. 28 135
[20] Kammash T 1975 Fusion Reactor Physics: Principles and Technology (Ann Arbor: Ann Arbor Science)
[21] Niu K 1989 Nuclear Fusion (Cambridge: Cambridge University Press)
[22] Hora H, Miley G H, Azizi N, Malekynia B, Ghoranneviss M and He X T 2009 Laser and Particle Beams 27 491
[23] Fraley G S, Linnebur F J, Mason R J and Morse R L 1974 Phys. Fluids 17 474
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[3] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[4] Effect of pulse duration on generation of attosecond pulse with coherent wake emission
Siyu Chen(陈思宇), Zhinan Zeng(曾志男), and Ruxin Li(李儒新). Chin. Phys. B, 2021, 30(11): 114206.
[5] Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma
Aynisa Tursun(阿依妮萨·图尔荪), Mamat Ali Bake(买买提艾力·巴克), Baisong Xie(谢柏松), Yasheng Niyazi(亚生·尼亚孜), and Abuduresuli Abudurexiti(阿不都热苏力·阿不都热西提). Chin. Phys. B, 2021, 30(11): 115202.
[6] Multibeam Raman amplification of a finite-duration seed in a short distance
Y G Chen(陈雨谷), Y Chen(陈勇), S X Xie(谢善秀), N Peng(彭娜), J Q Yu(余金清), and C Z Xiao(肖成卓). Chin. Phys. B, 2021, 30(10): 105202.
[7] Nonlinear propagation of an intense Laguerre-Gaussian laser pulse in a plasma channel
Mingping Liu(刘明萍), Zhen Zhang(张震), and Suhui Deng(邓素辉). Chin. Phys. B, 2021, 30(5): 055204.
[8] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[9] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[10] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[11] Analysis of extreme ultraviolet spectra of laser-produced Cd plasmas
Mohammedelnazier Bakhiet, Maogen Su(苏茂根), Shiquan Cao(曹世权), Qi Min(敏琦), Duixiong Sun(孙对兄), Siqi He(何思奇), Lei Wu(吴磊), Chenzhong Dong(董晨钟). Chin. Phys. B, 2020, 29(7): 075203.
[12] The inverse Bremsstrahlung absorption in the presence of Maxwellian and non-Maxwellian electrons
Mehdi Sharifian, Fatemeh Ghoveisi, Leila Gholamzadeh, Narges Firouzi Farrashbandi. Chin. Phys. B, 2019, 28(10): 105202.
[13] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[14] Properties of long light filaments in natural environment
Shi-You Chen(陈式有), Hao Teng(滕浩), Xin Lu(鲁欣), Zong-Wei Shen(沈忠伟), Shuang Qin(秦爽), Wen-Shou Wei(魏文寿), Rong-Yi Chen(陈荣毅), Li-Ming Chen(陈黎明), Yu-Tong Li(李玉同), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2018, 27(8): 085203.
[15] Laser-driven relativistic electron dynamics in a cylindrical plasma channel
Pan-Fei Geng(耿盼飞), Wen-Juan Lv(吕文娟), Xiao-Liang Li(李晓亮), Rong-An Tang(唐荣安), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2018, 27(3): 035201.
No Suggested Reading articles found!