Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 036103    DOI: 10.1088/1674-1056/19/3/036103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Hydrogen storage in BC3 composite single-walled nanotube:a combined density functional theory and Monte Carlo investigation

Liu Xiu-Ying(刘秀英)a)b), Wang Chao-Yang(王朝阳)b), Tang Yong-Jian(唐永建)b), Sun Wei-Guo(孙卫国)c), and Wu Wei-Dong (吴卫东)b)
a College of Science, Henan University of Technology, Zhengzhou 450001, China; b Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; c Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  This paper applies a density functional theory (DFT) and grand canonical Monte Carlo simulations (GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC3 nanotubes and carbon nanotubes. The DFT calculations may provide useful information about the nature of hydrogen adsorption and physisorption energies in selected adsorption sites of these two nanotubes. Furthermore, the GCMC simulations can reproduce their storage capacity by calculating the weight percentage of the adsorbed molecular hydrogen under different conditions. The present results have shown that with both computational methods, the hydrogen storage capacity of BC3 nanotubes is superior to that of carbon nanotubes. The reasons causing different behaviour of hydrogen storage in these two nanotubes are explained by using their contour plots of electron density and charge-density difference.
Keywords:  BC3 composite nanotube      hydrogen storage      density functional theory (DFT)      grand canonical Monte Carlo method (GCMC)  
Received:  09 October 2008      Revised:  22 June 2009      Accepted manuscript online: 
PACS:  84.60.-h (Direct energy conversion and storage)  
  61.46.Fg (Nanotubes)  
  68.43.Mn (Adsorption kinetics ?)  
  85.35.Kt (Nanotube devices)  
Fund: Project supported by Henan University of Technology Foundation (Grant No.~2009BS025) and China Academy of Engineering Physics Foundation (Grant No.~2007B08008).

Cite this article: 

Liu Xiu-Ying(刘秀英), Wang Chao-Yang(王朝阳), Tang Yong-Jian(唐永建), Sun Wei-Guo(孙卫国), and Wu Wei-Dong (吴卫东) Hydrogen storage in BC3 composite single-walled nanotube:a combined density functional theory and Monte Carlo investigation 2010 Chin. Phys. B 19 036103

[1] Dillon A C and Heben M J 2001 Appl. Phys. A 72 133
[2] Ding R G, Lu G Q, Yan Z F and Wilson M A 2001 J. Nanosci.Nanotechnol. 1 7
[3] Meregalli V and Parrinello M 2001 Appl. Phys. A 72 143
[4] Hirscher M and Becher M 2003 J. Nanosci. Nanotechnol. 3 3
[5] Liu C and Cheng H M 2005 J. Phys. D 38 R231
[6] Chen D, Yu B H, Wang C L and Gao T 2007 Chin. Phys. 16 2056
[7] Liu X Y, Wang C Y, Tang Y J, Sun W G, Wu W D, Zhang H Q, Liu M, YuanL and Xu J J 2009 Acta Phys. Sin. 58 1126 (in Chinese)
[8] Züttel A 2003 Mater. Today 9 24
[9] Orimo S, Züttel A, Schlapbach L, Majer G, Fukunaga T and Fujii H 2003 J. Appl. Crystallogr. 356 716
[10] Li J, Furuta T, Goto H, Ohashi T, Fujiwara Y and Yip S 2003 J.Chem. Phys. 119 2376
[11] Froudakis G E 2001 Nano. Lett. 1 531
[12] Arellano J S, Molina L M, Rubio A, López M J and Alonso J A 2002 J. Chem. Phys. 117 2281
[13] Cabria I, López M J and Alonso J A 2005 Europ. Phys. J. D 34 279
[14] Brown C M, Yildirim T, Newmann D A, Heben M J, Gennett T, Dillon AC, Alleman J L and Fischer J E 2000 Chem. Phys. Lett. 329 311
[15] Narehood D G, Pearce J V, Eklund P C, Sokol P E, Lechner R E, PieperJ, Copley J R D and Cook J C 2003 Phys. Rev. B 67 205409
[16] Iijima S 1991 Nature 354 56
[17] Miyamoto Y, Rubio A, Louie S G and Cohen M L 1994 Phys. Rev. B 50 18360
[18] Kim Y H, Chang K J and Louie S G 2001 Phys. Rev. B 63 205408
[19] Kim Y H, Sim H S and Chang K J 2001 Current Appl. Phys. 1 39
[20] Accelrys Inc. 2001 Material Studio CASTEP (San Diego: AccelrysInc.)
[21] Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200
[22] Han S S and Lee H M 2004 Carbon 42 2169
[23] Giannozzi P, Car R and Scoles G 2003 J. Chem. Phys. 118 1003
[24] Lazic P, Crljen ?, Brako R and Gumhalter B 2005 Phys. Rev.B 72 245407
[25] van den Berg A W C, Bromley S T, Wojdel J C and Jansen J C 2005 Phys. Rev. B 72 155428
[26] Khantha M, Cordero N A, Molina L M, Alonso J A and Girifalco L A 2004 Phys. Rev. B 70125422
[27] Du A J and Smith S C 2005 Nanotechnol. 16 2118
[28] Rigamonti S and Proetto C R 2006 Phys. Rev. B 73 235319
[29] Williams K A and Eklund P C 2000 Chem. Phys. Lett. 320 352
[30] Cheng J R, Yuan X H, Zhao L, Huang D C, Zhao M, Dai L and Ding R2004 Carbon 42 2019
[31] Kang J W and Hwang H J 2004 J. Phys. : Condens. Matter 6 3901
[32] Darkrim F and Levesque D 1998 J. Chem. Phys. 19 4981
[33] Frenkel D and Smit B 2001 Understanding Molecular SimulationFrom Algorithms to Applications (Orlando: Academic)
[34] Ubbelohde A R 1960 Graphite and its Crystal Compounds (Oxford:Clarendon) p5
[35] Pierson H O 1993 Handbook of Carbon, Graphite, Diamond, andFullerenes: Properties, Processing and Applications (New Jersey:Noyes) p45
[36] Zhou Z, Zhao J J, Gao X P, Chen Z F, Yan J, Schleyer P R andMorinaga M 2005 Chem. Mater. 17 992
[37] Cabria I, López M J and Alonso J A 2008 J. Chem. Phys. 128 144704
[38] Henwood D and Carey J D 2007 Phys. Rev. B 75 245413
[39] Gogotsi Y, Dash R K, Yushin G, Yildirim T, Laudisio G and Fischer JE 2005 J. Am. Chem. Soc. 127 16006
[40] Jordá -Beneyto M, Suá rez-García F, Lozano-CastellóD, Cazorla-Amorós D and Linares-Solano A 2007 Carbon 45 293
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[3] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[4] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[5] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[6] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[7] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[8] Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1-xCrx (x= 0-0.1) alloys for hydrogen storage
Linling Luo(罗林龄), Xiaoqiu Ye(叶小球), Guanghui Zhang(张光辉), Huaqin Kou(寇化秦), Renjin Xiong(熊仁金), Ge Sang(桑革), Ronghai Yu(于荣海), Dongliang Zhao(赵栋梁). Chin. Phys. B, 2020, 29(8): 088801.
[9] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[10] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[11] Sodium decorated net-Y nanosheet for hydrogen storage and adsorption mechanism: A first-principles study
Yunlei Wang(王云蕾), Yuhong Chen(陈玉红), Yunhui Wang(王允辉). Chin. Phys. B, 2020, 29(1): 016801.
[12] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[13] An overview of progress in Mg-based hydrogen storage films
Lyu Jinzhe, Andrey M Lider, Viktor N Kudiiarov. Chin. Phys. B, 2019, 28(9): 098801.
[14] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[15] Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage
Cheng Zhang(张诚), Shaolong Tang(唐少龙), Mingsen Deng(邓明森), Youwei Du(都有为). Chin. Phys. B, 2018, 27(6): 066103.
No Suggested Reading articles found!