Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 068704    DOI: 10.1088/1674-1056/ab84d1
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Potential dynamic analysis of tumor suppressor p53 regulated by Wip1 protein

Nan Liu(刘楠), Dan-Ni Wang(王丹妮), Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), Lian-Gui Yang(杨联贵)
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract  The tumor suppressor p53 plays a key role in protecting genetic integrity. Its dynamics have important physiological significance, which may be related to the cell fate. Previous experiments have shown that the wild-type p53-induced phosphatase 1 (Wip1) protein could maintain p53 oscillation. Therefore, we add Wip1 to remodel the p53 network. Firstly, we use the binomial τ-leap algorithm to prove our model stable under internal noise. Then, we make a series of bifurcation diagrams, that is, p53 levels as a function of p53 degradation rate at different Wip1 generation rates. The results illustrate that Wip1 is essential for p53 oscillation. Finally, a two-dimensional bifurcation diagram is made and the stability of some p53 dynamics under external noise is analyzed by potential landscape. Our results may have some implications for artificially interfering with p53 dynamics to achieve tumor suppression.
Keywords:  Wip1      p53-dynamics      oscillation  
Received:  12 January 2020      Revised:  28 March 2020      Accepted manuscript online: 
PACS:  87.85.Xd (Dynamical, regulatory, and integrative biology)  
  87.57.cm (Noise)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
  82.39.Rt (Reactions in complex biological systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11762011).
Corresponding Authors:  Hong-Li Yang     E-mail:  imuyhl@imu.edu.cn

Cite this article: 

Nan Liu(刘楠), Dan-Ni Wang(王丹妮), Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), Lian-Gui Yang(杨联贵) Potential dynamic analysis of tumor suppressor p53 regulated by Wip1 protein 2020 Chin. Phys. B 29 068704

[1] Vousden K H and Prives C 2009 Cell 137 413
[2] Kastan M B, Onyekwere O, Sidransky D, Vogelstein B and Craig R W 1991 Cancer Res. 51 6304
[3] Sengupta S and Harris C C 2005 Nat. Rev. Mol. Cell Biol. 6 44
[4] Elmore S 2007 J. Toxicol Pathol 35 495
[5] Purvis J E, Karhohs K W, Mock C, Batchelor E, Loewer A and Lahav G 2012 Science 336 1440
[6] Zhang Q H, Tian X J, Liu F and Wang W 2014 FEBS Lett. 588 4369
[7] Zhang X P, Liu F, Cheng Z and Wang W 2009 Proc. Natl. Acad. Sci. USA 106 12245
[8] Sun T, Chen C, Wu Y, Zhang S, Cui J and Shen P 2009 BMC Bioinformatics 10 190
[9] Li J, Yang Y, Peng Y et al. 2002 Nat. Genetics 31 133
[10] Rauta J, Alarmo E L, Kauraniemi P, Karhu R, Kuukasjärvi T and Kallioniemi A 2006 Breast Cancer Res. Treat. 95 257
[11] Hirrison M, Li J, Degenhardt Y, Hoey T and Powers S 2004 Trends Mol. Med. 10 359
[12] Bulavin D V, Demidov O N, Saito S et al. 2002 Nat. Genet. 31 210
[13] Lev B R, Maya R, Segel L A, Alon U, Levine A J and Oren M 2000 Proc. Natl. Acad. Sci. USA 97 11250
[14] Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine A J, Elowitz M B and Alon U 2004 Nat. Genet. 36 147
[15] Batchelor E, Mock C S, Bhan I, Loewer A and Lahav G 2008 Mol. Cell 30 277
[16] Zhang X P, Liu F and Wang W 2011 Proc. Natl. Acad. Sci. USA 108 8990
[17] Sun T Z, Yang W, Liu J and Shen P P 2011 PLoS. ONE 6 e27882
[18] Wang D G, Zhou C H and Zhang X P 2017 Chin. Phys. B 26 128709
[19] Wang J, Li X and Wang E 2008 Proc. Natl. Acad. Sci. USA 105 12271
[20] Li C and Ye L 2019 J. Chem. Phys. 151 175101
[21] Bi Y H, Yang Z Q and He X Y 2016 Acta. Phys. Sin. 65 028701 (in Chinese)
[22] Xia J F and Jia Y 2010 Chin. Phys. B 19 040506
[23] Zhuo Y Z, Yan S W and Zhang L J 2007 Acta. Phys. Sin. 56 2442 (in Chinese)
[24] Zhang T, Brazhnik P and Tyson J J 2007 Cell Cycle 6 85
[25] Zhuge C, Sun X, Chen Y and Lei J 2016 J. Theor. Biol. 388 1
[26] Levine A J 1997 Cell 88 323
[27] Falck J, Coates J and Jackson S P 2005 Nature 434 605
[28] Prives C 1998 Cell 95 5
[29] Stommel J M and Wahl G M 2004 EMBO J. 23 1547
[30] Hamard P J and Manfredi J J 2012 Cancer Cell 21 3
[31] Wang D G, Wang S B, Huang B and Liu F 2019 Sci. Rep. 9 5883
[32] Zhang X P, Liu F and Wang W 2012 Biophys. J. 102 2251
[1] Improved functional-weight approach to oscillatory patterns in excitable networks
Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2022, 31(9): 090502.
[2] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[3] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[4] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[5] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[6] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Pattern transition and regulation in a subthalamopallidal network under electromagnetic effect
Zilu Cao(曹子露), Lin Du(都琳), Honghui Zhang(张红慧), Yuzhi Zhao(赵玉枝), Zhuan Shen(申转), and Zichen Deng(邓子辰). Chin. Phys. B, 2022, 31(11): 118701.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[11] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[12] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[13] Dual mechanisms of Bcl-2 regulation in IP3-receptor-mediated Ca2+ release: A computational study
Hong Qi(祁宏), Zhi-Qiang Shi(史志强), Zhi-Chao Li(李智超), Chang-Jun Sun(孙长君), Shi-Miao Wang(王世苗), Xiang Li(李翔), and Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2021, 30(10): 108704.
[14] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[15] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
No Suggested Reading articles found!