ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
New formulas for normalizing photon-added (-subtracted) two-mode squeezed thermal states |
Hu Li-Yun (胡利云)a b, Fan Hong-Yi (范洪义)c, Zhang Zhi-Ming (张智明)b |
a College of Physics & Communication Electronics, Jiangxi Normal University, Nanchang 330022, China; b Laboratory of Nanophotonic Functional Materials and Devices, SIPSE & LQIT, South China Normal University, Guangzhou 510006, China; c Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China |
|
|
Abstract For the first time, we derive the compact forms of normalization factors for photon-added (-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of operators (IWOP) technique. It is found that these two factors are related to the Jacobi polynomials. In addition, some new relations are presented for the Jacobi polynomials.
|
Received: 30 July 2012
Revised: 12 September 2012
Accepted manuscript online:
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
03.65.Wj
|
(State reconstruction, quantum tomography)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264018 and 60978009), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Basic Research Project of China (Grant No. 2011CBA00200), and the Young Talents Foundation of Jiangxi Normal University, China. |
Corresponding Authors:
Hu Li-Yun
E-mail: hlyun@jxnu.edu.cn
|
Cite this article:
Hu Li-Yun (胡利云), Fan Hong-Yi (范洪义), Zhang Zhi-Ming (张智明) New formulas for normalizing photon-added (-subtracted) two-mode squeezed thermal states 2013 Chin. Phys. B 22 034202
|
[1] |
Bouwmeester D, Ekert A K and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer)
|
[2] |
Kim M S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 133001
|
[3] |
Li H M and Xu X F 2012 Chin. Phys. B 21 024202
|
[4] |
Wang Y Y, Liu Z J, Liao Q H, Wang J C and Liu S T 2011 Chin. Phys. B 20 054201
|
[5] |
Ourjoumtsev A, Dantan A, Tualle-Brouri R and Grangier Ph 2007 Phys. Rev. Lett. 98 030502
|
[6] |
Browne D E, Eisert J, Scheel S and Plenio M B 2003 Phys. Rev. A 67 062320
|
[7] |
Nha H and Carmichael H J 2004 Phys. Rev. Lett. 93 020401
|
[8] |
García-Patrón R, Fiurášek J, Cerf N J, Wenger J, Tualle-Brouri R and Grangier Ph 2004 Phys. Rev. Lett. 93 130409
|
[9] |
Bartlett S D and Sanders B C 2002 Phys. Rev. A 65 042304
|
[10] |
Neergaard-Nielsen J S, Melholt Nielsen B, Hettich C, Molmer K and Polzik E S 2006 Phys. Rev. Lett. 97 083604
|
[11] |
Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier Ph 2006 Science 312 83
|
[12] |
Wakui K, Takahashi H, Furusawa A and Sasaki M 2007 Opt. Express 15 3568
|
[13] |
Dakna M, Anhut T, Opatrny T, Knoll L and Welsch D G 1997 Phys. Rev. A 55 3184
|
[14] |
Glancy S and de Vasconcelos H M 2008 J. Opt. Soc. Am. B 25 712
|
[15] |
Spagnolo N, Vitelli C, De Angelis T, Sciarrino F and De Martini F 2009 Phys. Rev. A 80 032318
|
[16] |
Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286
|
[17] |
Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842
|
[18] |
Olivares S and Paris M G A 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S392
|
[19] |
Olivares S, Paris M G A and Bonifacio R 2003 Phys. Rev. A 67 032314
|
[20] |
Kitagawa A, Takeoka M, Sasaki M and Chefles A 2006 Phys. Rev. A 73 042310
|
[21] |
Cochrane P T, Ralph T C and Milburn G J 2002 Phys. Rev. A 65 062306
|
[22] |
Opatrny T, Kurizki G and Welsch D G 2000 Phys. Rev. A 61 032302
|
[23] |
Sasaki M and Suzuki S 2006 Phys. Rev. A 73 043807
|
[24] |
Kim M S, Park E, Knight P L and Jeong H 2005 Phys. Rev. A 71 043805
|
[25] |
Invernizzi C, Olivares S, Paris M G A and Banaszek K 2005 Phys. Rev. A 72 042105
|
[26] |
Lee S Y, Ji S W, Kim H J and Nha H 2011 Phys. Rev. A 84 012302
|
[27] |
Lu H 1999 Chin. Phys. Lett. 16 646
|
[28] |
Jiang N Q and Fan H Y 2010 Chin. Phys. Lett. 27 044206
|
[29] |
Barnett S M and Radmore P M 1997 Methods in Theoretical Quantum Optics (Oxford: Clarendon Press)
|
[30] |
Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
|
[31] |
Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
|
[32] |
Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer-Verlag) Appendix A
|
[33] |
Zhang Z X and Fan H Y 1993 Phys. Lett. A 174 206
|
[34] |
Fan H Y and Hu L Y 2008 Opt. Lett. 33 443
|
[35] |
Marian P 1992 Phys. Rev. A 45 2044
|
[36] |
Marian P, Marian T A and Scutaru H 2001 J. Phys. A: Math. Gen. 34 6969
|
[37] |
Xu X X, Hu L Y and Fan H Y 2009 Mod. Phys. Lett. A 24 2623
|
[38] |
Hu L Y, Wang S and Zhang Z M 2012 Chin. Phys. B 21 064207
|
[39] |
Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955
|
[40] |
Fan H Y and Jiang N Q 2010 Chin. Phys. Lett. 27 044206
|
[41] |
Hu L Y and Zhang Z M 2012 Chin. Opt. Lett. 10 082701
|
[42] |
Gong L H, Zhou N R, Hu L Y and Fan H Y 2012 Chin. Phys. B 21 080302
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|