Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 034202    DOI: 10.1088/1674-1056/22/3/034202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

New formulas for normalizing photon-added (-subtracted) two-mode squeezed thermal states

Hu Li-Yun (胡利云)a b, Fan Hong-Yi (范洪义)c, Zhang Zhi-Ming (张智明)b
a College of Physics & Communication Electronics, Jiangxi Normal University, Nanchang 330022, China;
b Laboratory of Nanophotonic Functional Materials and Devices, SIPSE & LQIT, South China Normal University, Guangzhou 510006, China;
c Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China
Abstract  For the first time, we derive the compact forms of normalization factors for photon-added (-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of operators (IWOP) technique. It is found that these two factors are related to the Jacobi polynomials. In addition, some new relations are presented for the Jacobi polynomials.
Keywords:  two-mode squeezed thermal states      normalization      photon addition and subtraction      integration within an ordered product of operators technique  
Received:  30 July 2012      Revised:  12 September 2012      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Wj (State reconstruction, quantum tomography)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264018 and 60978009), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Basic Research Project of China (Grant No. 2011CBA00200), and the Young Talents Foundation of Jiangxi Normal University, China.
Corresponding Authors:  Hu Li-Yun     E-mail:  hlyun@jxnu.edu.cn

Cite this article: 

Hu Li-Yun (胡利云), Fan Hong-Yi (范洪义), Zhang Zhi-Ming (张智明) New formulas for normalizing photon-added (-subtracted) two-mode squeezed thermal states 2013 Chin. Phys. B 22 034202

[1] Bouwmeester D, Ekert A K and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer)
[2] Kim M S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 133001
[3] Li H M and Xu X F 2012 Chin. Phys. B 21 024202
[4] Wang Y Y, Liu Z J, Liao Q H, Wang J C and Liu S T 2011 Chin. Phys. B 20 054201
[5] Ourjoumtsev A, Dantan A, Tualle-Brouri R and Grangier Ph 2007 Phys. Rev. Lett. 98 030502
[6] Browne D E, Eisert J, Scheel S and Plenio M B 2003 Phys. Rev. A 67 062320
[7] Nha H and Carmichael H J 2004 Phys. Rev. Lett. 93 020401
[8] García-Patrón R, Fiurášek J, Cerf N J, Wenger J, Tualle-Brouri R and Grangier Ph 2004 Phys. Rev. Lett. 93 130409
[9] Bartlett S D and Sanders B C 2002 Phys. Rev. A 65 042304
[10] Neergaard-Nielsen J S, Melholt Nielsen B, Hettich C, Molmer K and Polzik E S 2006 Phys. Rev. Lett. 97 083604
[11] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier Ph 2006 Science 312 83
[12] Wakui K, Takahashi H, Furusawa A and Sasaki M 2007 Opt. Express 15 3568
[13] Dakna M, Anhut T, Opatrny T, Knoll L and Welsch D G 1997 Phys. Rev. A 55 3184
[14] Glancy S and de Vasconcelos H M 2008 J. Opt. Soc. Am. B 25 712
[15] Spagnolo N, Vitelli C, De Angelis T, Sciarrino F and De Martini F 2009 Phys. Rev. A 80 032318
[16] Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286
[17] Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842
[18] Olivares S and Paris M G A 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S392
[19] Olivares S, Paris M G A and Bonifacio R 2003 Phys. Rev. A 67 032314
[20] Kitagawa A, Takeoka M, Sasaki M and Chefles A 2006 Phys. Rev. A 73 042310
[21] Cochrane P T, Ralph T C and Milburn G J 2002 Phys. Rev. A 65 062306
[22] Opatrny T, Kurizki G and Welsch D G 2000 Phys. Rev. A 61 032302
[23] Sasaki M and Suzuki S 2006 Phys. Rev. A 73 043807
[24] Kim M S, Park E, Knight P L and Jeong H 2005 Phys. Rev. A 71 043805
[25] Invernizzi C, Olivares S, Paris M G A and Banaszek K 2005 Phys. Rev. A 72 042105
[26] Lee S Y, Ji S W, Kim H J and Nha H 2011 Phys. Rev. A 84 012302
[27] Lu H 1999 Chin. Phys. Lett. 16 646
[28] Jiang N Q and Fan H Y 2010 Chin. Phys. Lett. 27 044206
[29] Barnett S M and Radmore P M 1997 Methods in Theoretical Quantum Optics (Oxford: Clarendon Press)
[30] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[31] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[32] Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer-Verlag) Appendix A
[33] Zhang Z X and Fan H Y 1993 Phys. Lett. A 174 206
[34] Fan H Y and Hu L Y 2008 Opt. Lett. 33 443
[35] Marian P 1992 Phys. Rev. A 45 2044
[36] Marian P, Marian T A and Scutaru H 2001 J. Phys. A: Math. Gen. 34 6969
[37] Xu X X, Hu L Y and Fan H Y 2009 Mod. Phys. Lett. A 24 2623
[38] Hu L Y, Wang S and Zhang Z M 2012 Chin. Phys. B 21 064207
[39] Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955
[40] Fan H Y and Jiang N Q 2010 Chin. Phys. Lett. 27 044206
[41] Hu L Y and Zhang Z M 2012 Chin. Opt. Lett. 10 082701
[42] Gong L H, Zhou N R, Hu L Y and Fan H Y 2012 Chin. Phys. B 21 080302
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[3] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[4] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[5] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
[6] Effect of weak disorder in multi-Weyl semimetals
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平). Chin. Phys. B, 2020, 29(7): 077202.
[7] Controllable precision of the projective truncation approximation for Green's functions
Peng Fan(范鹏), Ning-Hua Tong(同宁华). Chin. Phys. B, 2019, 28(4): 047102.
[8] Phase transitions of the five-state clock model on the square lattice
Yong Chen(陈勇), Zhi-Yuan Xie(谢志远), Ji-Feng Yu(余继锋). Chin. Phys. B, 2018, 27(8): 080503.
[9] Generalized Lanczos method for systematic optimization of tensor network states
Rui-Zhen Huang(黄瑞珍), Hai-Jun Liao(廖海军), Zhi-Yuan Liu(刘志远), Hai-Dong Xie(谢海东), Zhi-Yuan Xie(谢志远), Hui-Hai Zhao(赵汇海), Jing Chen(陈靖), Tao Xiang(向涛). Chin. Phys. B, 2018, 27(7): 070501.
[10] Study on the phase transition of the fractal scale-free networks
Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团). Chin. Phys. B, 2018, 27(10): 106402.
[11] Equilibrium dynamics of the sub-Ohmic spin-boson model under bias
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060501.
[12] Dynamical correlation functions of the quadratic coupling spin-Boson model
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060502.
[13] Kosterlitz-Thouless transition, spectral property and magnetic moment for a two-dot structure with level difference
Yong-Chen Xiong(熊永臣), Wang-Huai Zhou(周望怀), Jun Zhang(张俊), Nan Nan(南楠). Chin. Phys. B, 2017, 26(6): 067501.
[14] Off-site trimer superfluid on a one-dimensional optical lattice
Er-Nv Fan(范二女), Tony C Scott, Wan-Zhou Zhang(张万舟). Chin. Phys. B, 2017, 26(4): 043701.
[15] Tight-binding electron-phonon coupling and band renormalization in graphene
Zhang De-Sheng (张德生), Kang Guang-Zhen (康广震), Li Jun (李俊). Chin. Phys. B, 2015, 24(1): 017301.
No Suggested Reading articles found!