Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054301    DOI: 10.1088/1674-1056/ab81f7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Location of micro-cracks in plates using time reversed nonlinear Lamb waves

Yaoxin Liu(刘尧鑫)1, Aijun He(何爱军)3, Jiehui Liu(刘杰惠)1, Yiwei Mao(毛一葳)1, Xiaozhou Liu(刘晓宙)1,2
1 Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Nanjing University, Nanjing 210093, China;
2 Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
Abstract  A promising tool to detect micro-cracks in plate-like structures is used for generating higher harmonic Lamb waves. In this paper, a method combining nonlinear S0 mode Lamb waves with time reversal to locate micro-cracks is presented and verified by numerical simulations. Two different models, the contact acoustic nonlinearity (CAN) model and the Preisach-Mayergoyz (PM) model, are used to simulate a localized damage in a thin plate. Pulse inversion method is employed to extract the second and fourth harmonics from the received signal. Time reversal is performed to compensate the dispersion of S0 mode Lamb waves. Consequently, the higher harmonics generated from the damaged area can be refocused on their source. By investigating the spatial distribution of harmonic wave packets, the location of micro-cracks will be revealed. The numerical simulations indicate that this method gives accurate locations of the damaged area in a plate. Furthermore, the PM model is proved to be a suitable model to simulate the micro-cracks in plates for generation of higher harmonics.
Keywords:  Lamb waves      higher harmonics      time reversal      damage location  
Received:  05 December 2019      Revised:  12 February 2020      Accepted manuscript online: 
PACS:  43.25.Dc (Nonlinear acoustics of solids)  
  43.40.Le (Techniques for nondestructive evaluation and monitoring, acoustic emission)  
  43.60.Tj (Wave front reconstruction, acoustic time-reversal, and phase conjugation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFF0203000), the State Key Program of the National Natural Science Foundation of China (Grant No. 11834008), the National Natural Science Foundation of China (Grant No. 11774167), the Fund from the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201809), the Science Fund from the Key Laboratory of Underwater Acoustic Environment, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701), and the Natural Science Fund for AQSIQ Technology Research and Development Program, China (Grant No. 2017QK125).
Corresponding Authors:  Xiaozhou Liu     E-mail:  xzliu@nju.edu.cn

Cite this article: 

Yaoxin Liu(刘尧鑫), Aijun He(何爱军), Jiehui Liu(刘杰惠), Yiwei Mao(毛一葳), Xiaozhou Liu(刘晓宙) Location of micro-cracks in plates using time reversed nonlinear Lamb waves 2020 Chin. Phys. B 29 054301

[1] Pruell C, Kim J Y, Qu J and Jacobs L J 2009 Smart Mater. Struct. 18 35003
[2] Li W, Cho Y and Achenbach J D 2012 Smart Mater. Struct. 21 85019
[3] Rauter N and Lammering R 2015 Mech. Adv. Mater. Struct. 22 44
[4] Li W, Xu Y, Hu N and Deng M 2020 Meas. Sci. Technol. 31 14001
[5] Deng M 1996 Acta Acust. 21 429 (in Chinese)
[6] Deng M 1997 Acta Acust. 22 182 (in Chinese)
[7] Deng M 2003 J. Appl. Phys. 94 4152
[8] De Lima W J N and Hamilton M F 2003 J. Sound Vib. 265 819
[9] Müller M F, Kim J Y, Qu J and Jacobs L J 2010 J. Acoust. Soc. Am. 127 2141
[10] Wan X, Zhang Q, Xu G and Tse P W 2014 Sensors 14 8528
[11] Shen Y and Giurgiutiu V 2014 J. Intell. Mater. Syst. Struct. 25 506
[12] Kim J Y, Jacobs L J, Qu J and Littles J W 2006 J. Acoust. Soc. Am. 120 1266
[13] Pruell C, Kim J Y, Qu J and Jacobs L J 2007 Appl. Phys. Lett. 91 231911
[14] Liu Y, Li Z and Zhang W 2010 Nondestruct. Test. Eval. 25 25
[15] Wan X, Peter W T, Chen J, Xu G and Zhang Q 2018 Ultrasonics 82 57
[16] Zhu W, Xiang Y, Liu C J, Deng M and Xuan F Z 2018 J. Appl. Phys. 123 104902
[17] Rauter N and Lammering R 2015 Smart Mater. Struct. 24 45027
[18] Li W B, Deng M X and Xiang Y X 2017 Chin. Phys. B 26 114302
[19] Park H W, Kim S B and Sohn H 2009 Wave Motion 46 451
[20] Yelve N P, Mitra M and Mujumdar P M 2017 Compos. Struct. 159 257
[21] Van Den Abeele K, Carmeliet J, Ten Cate J A and Johnson P A 2000 J. Res. Nondestruct. Eval. 12 31
[22] Goursolle T, CalléS, Dos Santos S and Bou Matar O 2007 J. Acoust. Soc. Am. 122 3220
[23] Vanaverbeke S and Van Den Abeele K 2007 J. Acoust. Soc. Am. 122 58
[24] Mayergoyz I D 1985 J. Appl. Phys. 57 3803
[25] Zhu J, Zhang Y and Liu X 2014 Wave Motion 51 146
[26] Liu Y, Kim J Y, Jacobs L J, Qu J and Li Z 2012 J. Appl. Phys. 111 53511
[27] Nienwenhui J H, Neumann J J, Greve D W and Oppenheim I J 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 2103
[28] Wilkening W, Krueger M and Ermert H 2000 2000 IEEE Proc. Ultrasonics Symposium, an International Symposium (Cat. No. 00CH37121), October 22-25, 2000, San Juan, Puerto Rico, Vol. 2 p. 1559
[29] Zhang L, Zhang Y, Liu X and Gong X 2014 Chin. Phys. B 23 104301
[30] Giurgiutiu V 2005 J. Intell. Mater. Syst. Struct. 16 291
[1] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[2] Lamb waves topological imaging combining with Green's function retrieval theory to detect near filed defects in isotropic plates
Hui Zhang(张辉), Hai-Yan Zhang(张海燕), Meng-Yun Xu(徐梦云), Guo-Peng Fan(范国鹏), Wen-Fa Zhu(朱文发), Xiao-Dong Chai(柴晓冬). Chin. Phys. B, 2019, 28(7): 074301.
[3] Shannon information capacity of time reversal wideband multiple-input multiple-output system based on correlated statistical channels
Yu Yang(杨瑜), Bing-Zhong Wang(王秉中), Shuai Ding(丁帅). Chin. Phys. B, 2016, 25(5): 050101.
[4] Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers
Ming-Liang Li(李明亮), Ming-Xi Deng(邓明晰), Guang-Jian Gao(高广健). Chin. Phys. B, 2016, 25(12): 124301.
[5] Quantitative damage imaging using Lamb wave diffraction tomography
Hai-Yan Zhang(张海燕), Min Ruan(阮敏), Wen-Fa Zhu(朱文发), Xiao-Dong Chai(柴晓冬). Chin. Phys. B, 2016, 25(12): 124304.
[6] The determination of the relative permittivity of periodic stratified media based on the iterative time-reversal method
Zhang Zhi-Min (章志敏), Wang Bing-Zhong (王秉中), Liang Mu-Sheng (梁木生), Ji Qing (纪晴), Song Gang-Bing (宋钢兵). Chin. Phys. B, 2014, 23(4): 048403.
[7] Multi-crack imaging using nonclassical nonlinear acoustic method
Zhang Lue (张略), Zhang Ying (张盈), Liu Xiao-Zhou (刘晓宙), Gong Xiu-Fen (龚秀芬). Chin. Phys. B, 2014, 23(10): 104301.
[8] Piezoelectric transducer parameter selection for exciting a single mode from multiple modes of Lamb waves
Zhang Hai-Yan(张海燕) and Yu Jian-Bo(于建波) . Chin. Phys. B, 2011, 20(9): 094301.
[9] Adaptive and optimal detection of elastic object scattering with single-channel monostatic iterative time reversal
Ying Ying-Zi(应英子), Ma Li(马力), and Guo Sheng-Ming(郭圣明). Chin. Phys. B, 2011, 20(5): 054301.
[10] Theory of higher harmonics imaging in tapping-mode atomic force microscopy
Li Yuan(李渊), Qian Jian-Qiang(钱建强), and Li Ying-Zi(李英姿). Chin. Phys. B, 2010, 19(5): 050701.
[11] A time reversal damage imaging method for structure health monitoring using Lamb waves
Zhang Hai-Yan(张海燕), Cao Ya-Ping(曹亚萍), Sun Xiu-Li(孙修立), Chen Xian-Hua(陈先华), and Yu Jian-Bo(于建波). Chin. Phys. B, 2010, 19(11): 114301.
[12] Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate
Xiang Yan-Xun (项延训), Deng Ming-Xi (邓明晰). Chin. Phys. B, 2008, 17(11): 4232-4241.
No Suggested Reading articles found!