Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 128702    DOI: 10.1088/1674-1056/26/12/128702
Special Issue: SPECIAL TOPIC — Soft matter and biological physics
SPECIAL TOPIC—Soft matter and biological physics Prev   Next  

Computational study of non-catalytic T-loop pocket on CDK proteins for drug development

Huiwen Wang(王慧雯)1, Kaili Wang(王凯丽)1, Zeyu Guan(管泽雨)1, Yiren Jian(简弋人)2,4, Ya Jia(贾亚)1, Fatah Kashanchi3, Chen Zeng(曾辰)1,2, Yunjie Zhao(赵蕴杰)1
1. Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China;
2. Department of Physics, The George Washington University, Washington, DC 20052, USA;
3. George Mason University, Laboratory of Molecular Virology, Manassas, VA 20110, USA;
4. QM Simulations Inc., 4464 Willow Rd, Pleasanton, CA 94588, USA
Abstract  

Cyclin-dependent kinases (CDKs) are critical to the cell cycle and many other biological processes, and as such, are considered as one of the promising targets for therapy against cancer and other diseases. Most pan-CDK inhibitors bind to the highly conserved catalytic ATP-binding pocket and therefore lack the specificity to prevent side effects. It is desirable to develop drugs targeting non-catalytic pockets for specificity towards individual CDKs. Here we performed a systematic analysis of non-catalytic pockets on CDKs and identified a region underneath the T-loop, which we term TL pocket, for potential inhibitor development. Specifically, we compared the TL pockets of human CDK2 and CDK7-homolog Pfmrk of Plasmodium falciparum, a malaria-causing parasite. Molecular dynamics simulations of several short peptides revealed that this less conserved TL pocket could be used to design potentially specific inhibitors against malaria disease.

Keywords:  cyclin-dependent kinases      non-catalytic      TL pocket      inhibitor design  
Received:  07 August 2017      Revised:  25 September 2017      Accepted manuscript online: 
PACS:  87.14.E- (Proteins)  
  87.15.ap (Molecular dynamics simulation)  
  87.15.Qt (Sequence analysis)  
  87.19.X- (Diseases)  
Corresponding Authors:  Chen Zeng, Chen Zeng     E-mail:  chenz@gwu.edu;yjzhaowh@mail.ccnu.edu.cn

Cite this article: 

Huiwen Wang(王慧雯), Kaili Wang(王凯丽), Zeyu Guan(管泽雨), Yiren Jian(简弋人), Ya Jia(贾亚), Fatah Kashanchi, Chen Zeng(曾辰), Yunjie Zhao(赵蕴杰) Computational study of non-catalytic T-loop pocket on CDK proteins for drug development 2017 Chin. Phys. B 26 128702

[1] Endicott J A and Noble M E 1998 Structure 6 535
[2] Enserink J M and Kolodner R D 2010 Cell. Div. 5 11
[3] Ubersax J A, Woodbury E L, Quang P N, Paraz M, Blethrow J D, Shah K, Shokat K M and Morgan D O 2003 Nature 425 859
[4] Loog M and Morgan D O 2005 Nature 434 104
[5] Holt L J, Tuch B B, Villen J, Johnson A D, Gygi S P and Morgan D O 2009 Science 325 1682
[6] Paglini G and Caceres A 2001 Eur. J. Biochem. 268 1528
[7] Demetrick D J, Zhang H and Beach D H 1994 Cytogenet. Cell Genet. 66 72
[8] Otto T and Sicinski P 2017 Nat. Rev. Cancer 17 93
[9] Dachineni R, Ai G, Kumar D R, Sadhu S S, Tummala H and Bhat G J 2016 Mol. Cancer Res. 14 241
[10] Shukla D, Meng Y, Roux B and Pande V S 2014 Nat. Commun. 5 3397
[11] Liu H, Liu K, Huang Z, Park C M, Thimmegowda N R, Jang J H, Ryoo I J, He L, Kim S O, Oi N, Lee K W, Soung N K, Bode A M, Yang Y, Zhou X, Erikson R L, Ahn J S, Hwang J, Kim K E, Dong Z and Kim B Y 2013 J. Biol. Chem. 288 25924
[12] Martin M P, Alam R, Betzi S, Ingles D J, Zhu J Y and Schonbrunn E 2012 Chembiochem 13 2128
[13] Doerig C, Abdi A, Bland N, Eschenlauer S, Dorin-Semblat D, Fennell C, Halbert J, Holland Z, Nivez M P, Semblat J P, Sicard A and Reininger L 2010 Biochim. Biophys. Acta 1804 604
[14] Peng Y, Keenan S M and Welsh W J 2005 J. Mol. Graph. Model 24 72
[15] Leete T H and Rubin H 1996 Parasitol. Today 12 442
[16] Wei Y and Lu-Hua L 2016 Chin. Phys. B 25 018702
[17] Zhang Y H, Peng J H and Zhang Z Y 2015 Chin. Phys. B 24 126101
[18] Sun Z H and Jiang F 2010 Chin. Phys. B 19 110502
[19] Kaur G, Stetler-Stevenson M, Sebers S, Worland P, Sedlacek H, Myers C, Czech J, Naik R and Sausville E 1992 J. Natl. Cancer Inst. 84 1736
[20] Arguello F, Alexander M, Sterry J A, Tudor G, Smith E M, Kalavar N T, Greene Jr J F, Koss W, Morgan C D, Stinson S F, Siford T J, Alvord W G, Klabansky R L and Sausville E A 1998 Blood 91 2482
[21] Chao S H, Fujinaga K, Marion J E, Taube R, Sausville E A, Senderowicz A M, Peterlin B M and Price D H 2000 J. Biol. Chem. 275 28345
[22] Lanasa M C, Andritsos L, Brown J R, Gabrilove J, Caligaris-Cappio F, Ghia P, Larson R A, Kipps T J, Leblond V, Milligan D W, Janssens A, Johnson A J, Heerema N A, Buhler A, Stilgenbauer S, Devin J, Hallek M, Byrd J C and Grever M R 2015 Leuk. Res. 39 495
[23] Xing S, Li F, Zeng Z, Zhao Y, Yu S, Shan Q, Li Y, Phillips F C, Maina P K, Qi H H, Liu C, Zhu J, Pope R M, Musselman C A, Zeng C, Peng W and Xue H H 2016 Nat. Immunol. 17 695
[24] Zhao Y, Zeng C and Massiah M A 2015 Plos One 10
[25] Zhao Y, Zeng C, Tarasova N I, Chasovskikh S, Dritschilo A and Timofeeva O A 2013 Transcription 4 227
[26] Zhao Y, Huang Y, Gong Z, Wang Y, Man J and Xiao Y 2012 Sci. Rep. 2 734
[27] Zhao Y, Gong Z and Xiao Y 2011 J. Biomol. Struct. Dyn. 28 815
[28] Wang J, Zhao Y, Zhu C and Xiao Y 2015 Nucleic. Acids. Res. 43 e63
[29] Liu Q, Chen W, Chen C, Zhao Y and Zeng C 2017 Chemical Journal of Chinese Universities 38 1185
[30] Betzi S, Alam R, Martin M, Lubbers D J, Han H, Jakkaraj S R, Georg G I and Schonbrunn E 2011 ACS Chem. Biol. 6 492
[31] Rastelli G, Anighoro A, Chripkova M, Carrassa L and Broggini M 2014 Cell. Cycle. 13 2296
[32] Chen H, Zhao Y, Li H, Zhang D, Huang Y, Shen Q, Van Duyne R, Kashanchi F, Zeng C and Liu S 2014 PLoS One 9 e109154
[33] Hu Y, Li S, Liu F, Geng L, Shu X and Zhang J 2015 Bioorg. Med. Chem. Lett. 25 4069
[34] Volkamer A, Kuhn D, Grombacher T, Rippmann F and Rarey M 2012 J. Chem. Inf. Model. 52 360
[35] Volkamer A, Griewel A, Grombacher T and Rarey M 2010 J. Chem. Inf. Model. 50 2041
[36] Letunic I and Bork P 2011 Nucleic. Acids. Res. 39 W475
[37] Letunic I and Bork P 2007 Bioinformatics 23 127
[38] Letunic I and Bork P 2016 Nucleic. Acids. Res. 44 W242
[39] Jeffrey P D, Russo A A, Polyak K, Gibbs E, Hurwitz J, Massague J and Pavletich N P 1995 Nature 376 313
[40] Lolli G, Lowe E D, Brown N R and Johnson L N 2004 Structure 12 2067
[41] Tahirov T H, Babayeva N D, Varzavand K, Cooper J J, Sedore S C and Price D H 2010 Nature 465 747
[42] Yang J, Yan R, Roy A, Xu D, Poisson J and Zhang Y 2015 Nature Methods 12 7
[43] Roy A, Kucukural A and Zhang Y 2010 Nature Protocols 5 725
[44] Goldenberg O, Erez E, Nimrod G and Ben-Tal N 2009 Nucleic. Acids. Res. 37 D323
[45] Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T and Ben-Tal N 2016 Nucleic. Acids. Res. 44 W344
[46] Katoh K and Standley D M 2014 Methods. Mol. Biol. 1079 131
[47] Pupko T, Bell R E, Mayrose I, Glaser F and Ben-Tal N 2002 Bioinformatics 18 S71
[48] Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts M R, Smith J C, Kasson P M, van der Spoel D, Hess B and Lindahl E 2013 Bioinformatics 29 845
[49] Oostenbrink C, Villa A, Mark A E and van Gunsteren W F 2004 J. Comput. Chem. 25 1656
[50] Sethi A, Eargle J, Black A A and Luthey-Schulten Z 2009 Proc. Natl. Acad. Sci. USA 106 6620
[51] Zhao Y, Jian Y, Liu Z, Liu H, Liu Q, Chen C, Li Z, Wang L, Huang H H and Zeng C 2017 Sci. Rep. 7 2876
[52] Fraczkiewicz R and Braun W 1998 J. Comput. Chem. 19 319
[53] Ingles-Prieto A, Ibarra-Molero B, Delgado-Delgado A, Perez-Jimenez R, Fernandez J M, Gaucher E A, Sanchez-Ruiz J M and Gavira J A 2013 Structure 21 1690
[54] Crompton P D, Moebius J, Portugal S, Waisberg M, Hart G, Garver L S, Miller L H, Barillas-Mury C and Pierce S K 2014 Ann. Rev. Immunology 32 157
[55] Waters N C, Woodard C L and Prigge S T 2000 Molecular and Biochemical Parasitology 107 45
[56] Hagel M, Niu D, Martin T St, Sheets M P, Qiao L, Bernard H, Karp R M, Zhu Z, Labenski M T, Chaturvedi P, Nacht M, Westlin W F, Petter R C and Singh J 2011 Nat. Chem. Biol. 7 22
[1] Single-molecular methodologies for the physical biology of protein machines
Shuang Wang(王爽), Ying Lu(陆颖), and Ming Li(李明). Chin. Phys. B, 2022, 31(12): 128702.
[2] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[3] Diffusion of nucleotide excision repair protein XPA along DNA by coarse-grained molecular simulations
Weiwei Zhang(张伟伟) and Jian Zhang(张建). Chin. Phys. B, 2021, 30(10): 108703.
[4] Tunable inhibition of β-amyloid peptides by fast green molecules
Tiantian Yang(杨甜甜), Tianxiang Yu(俞天翔), Wenhui Zhao(赵文辉), and Dongdong Lin(林冬冬). Chin. Phys. B, 2021, 30(8): 088701.
[5] Modeling hydrogen exchange of proteins by a multiscale method
Wentao Zhu(祝文涛), Wenfei Li(李文飞), and Wei Wang(王炜). Chin. Phys. B, 2021, 30(7): 078701.
[6] Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers
Huanhuan Su(苏环环), Hao Sun(孙皓), Haiyan Hong(洪海燕), Zilong Guo(郭子龙), Ping Yu(余平), and Hu Chen(陈虎). Chin. Phys. B, 2021, 30(7): 078201.
[7] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[8] Statistical potentials for 3D structure evaluation: From proteins to RNAs
Ya-Lan Tan(谭雅岚), Chen-Jie Feng(封晨洁), Xunxun Wang(王勋勋), Wenbing Zhang(张文炳), and Zhi-Jie Tan(谭志杰). Chin. Phys. B, 2021, 30(2): 028705.
[9] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[10] Application of topological soliton in modeling protein folding: Recent progress and perspective
Xu-Biao Peng(彭绪彪)†, Jiao-Jiao Liu(刘娇娇), Jin Dai(戴劲), Antti J Niemi‡, and Jian-Feng He(何建锋)§. Chin. Phys. B, 2020, 29(10): 108705.
[11] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[12] Lipoprotein in cholesterol transport: Highlights and recent insights into its structural basis and functional mechanism
Shu-Yu Chen(陈淑玉), Na Li(李娜), Tao-Li Jin(金桃丽), Lu Gou(缑璐), Dong-Xiao Hao(郝东晓), Zhi-Qi Tian(田芷淇), Sheng-Li Zhang(张胜利), Lei Zhang(张磊). Chin. Phys. B, 2018, 27(2): 028702.
[13] Optimizing the atom types of proteins through iterative knowledge-based potentials
Xin-Xiang Wang(汪心享), Sheng-You Huang(黄胜友). Chin. Phys. B, 2018, 27(2): 020503.
[14] A network of conformational transitions in an unfolding process of HP-35 revealed by high-temperature MD simulation and a Markov state model
Dandan Shao(邵丹丹), Kaifu Gao(高恺夫). Chin. Phys. B, 2018, 27(1): 018701.
[15] Smoothing potential energy surface of proteins by hybrid coarse grained approach
Yukun Lu(卢禹锟), Xin Zhou(周昕), ZhongCan OuYang(欧阳钟灿). Chin. Phys. B, 2017, 26(5): 050202.
No Suggested Reading articles found!