Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018702    DOI: 10.1088/1674-1056/abb7f7
Special Issue: SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of interaction between loop bases and ions on stability of G-quadruplex DNA

Han-Zhen Qiao(乔汉真), Yuan-Yan Wu(吴园燕)†, Yusong Tu(涂育松)‡, and Cong-Min Ji(祭聪敏)
College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China
Abstract  G-quadruplexes (GQs) are guanine-rich, non-canonical nucleic acid structures that play fundamental roles in biological processes. The topology of GQs is associated with the sequences and lengths of DNA, the types of linking loops, and the associated metal cations. However, our understanding on the basic physical properties of the formation process and the stability of GQs is rather limited. In this work, we employed ab initio, molecular dynamics (MD), and steered MD (SMD) simulations to study the interaction between loop bases and ions, and the effect on the stability of G-quadruplex DNA, the Drude oscillator model was used in MD and SMD simulations as a computationally efficient manner method for modeling electronic polarization in DNA ion solutions. We observed that the binding energy between DNA bases and ions (K + /Na + ) is about the base stacking free energies indicates that there will be a competition among the binding of M + -base, H-bonds between bases, and the base-stacking while ions were bound in loop of GQs. Our SMD simulations indicated that the side loop inclined to form the base stacking while the loop sequence was Thy or Ade, and the cross-link loop upon the G-tetrads was not easy to form the base stacking. The base stacking side loop complex K + was found to have a good stabilization synergy. Although a stronger interaction was observed to exist between Cyt and K + , such an interaction was unable to promote the stability of the loop with the sequence Cyt.
Keywords:  G-quadruplex      loop      DNA base      metal ion  
Received:  28 June 2020      Revised:  12 August 2020      Accepted manuscript online:  14 September 2020
PACS:  87.14.gk (DNA)  
  87.15.-v (Biomolecules: structure and physical properties)  
  87.15.ag (Quantum calculations)  
  87.15.ap (Molecular dynamics simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705160 and 11647074).
Corresponding Authors:  Corresponding author. E-mail: yywu@yzu.edu.cn Corresponding author. E-mail: ystu@yzu.edu.cn   

Cite this article: 

Han-Zhen Qiao(乔汉真), Yuan-Yan Wu(吴园燕), Yusong Tu(涂育松), and Cong-Min Ji(祭聪敏) Effect of interaction between loop bases and ions on stability of G-quadruplex DNA 2021 Chin. Phys. B 30 018702

1 Lerner L K and Sale J E 2019 Genes 10 95
2 Yan X 2011 Chem. Soc. Rev. 40 2719
3 Spiegel J, Adhikari S and Balasubramanian S 2020 Trends in Chemistry 2 123
4 Rhodes D and Lipps H J 2015 Nucleic Acids Research 18 8627
5 Capra J A, Paeschke K, Singh M and Zakian V A 2010 PLoS Comput. Biol. 6 e1000861
6 Phan A T 2010 The FEBS Journal 277 1107
7 Rachwal P A and Fox K R 2007 Methods 43 291
8 \vSket P, \vCrnugelj M and Plavec J 2004 Bioorganic & Medicinal Chemistry 12 5735
9 Bochman M L, Paeschke K and Zakian V A 2012 Nature Reviews-Genetics 13 770
10 Ahmed S, Kaushik M, Chaudhary S and Kukreti S 2018 Biopolymers 109 e23115
11 Bergues-Pupo A E, Arias-Gonzalez J R, Moròn M C, Fiasconaro A and Falo F 2015 Nucleic Acids Research 43 7638
12 Xiong K X, Xi K, Bao L, Zhang Z L and Tan Z J 2018 Acta Phys. Sin. 67 108701 (in Chinese)
13 Salsbury A M and Lemkul J A 2019 J. Phys. Chem. B 123 148
14 Tucker B A, Hudson J S, Ding L, Lewis E, Sheardy R D, Kharlampieva E and Graves D 2018 ACS Omega 3 844
15 Burge S, Parkinson G N, Hazel P, Todd A K and Neidle S 2006 Nucleic Acids Research 34 5402
16 Tao G, Chen Y, Lin R, Zhou J, Pei X, Liu F and Li N 2018 Nano Res. 11 2237
17 Islam B, Stadlbauer P, Krepl M, Havrila M, Haider S and Sponer J 2018 J. Chem. Theor. Comput. 14 5011
18 Lane A N, Chaires J B, Gray R D and Trent J O 2008 Nucleic Acids Research 36 5482
19 Lei X L, Qi W P and Fang H P 2013 Chin. Phys. Lett. 30 128701
20 Wang Y Z, Hou X M, Ju H P, Xiao X, Xi X G, Dou S X, Wang P Y and Li W 2018 Chin. Phys. B 27 068701
21 Lenar\vci\vc \vZivkovi\'c M, Rozman J and Plavec J 2018 Angewandte Chemie 57 15395
22 Frisch M, et al. (2009) Gaussian 09. Revision D.01, Gaussian Inc., Wallingford CT, 201
23 poner J, Mlàdek A, \vSpa\vckovà N, Cang X, Cheatham T E and Grimme S 2013 J. Amer. Chem. Soc. 135 9785
24 Goodsell D S 2000 Stem Cells 18 148
25 Carbò R and Martin M 1975 Int. J. Quantum Chem. 9 193
26 Wintjens R, Liévin J, Rooman M and Buisine E 2000 J. Mol. Biol. 302 393
27 Brooks B R, Brooks Iii C L, Mackerell A D Jr, Nilsson L, Petrella R J, Roux B, Won Y and Archontis G 2009 J. Comput. Chem. 30 1545
28 Hart K, Foloppe N, Baker C M, Denning E J, Nilsson L and MacKerell A D 2012 J. Chem. Theor. Comput. 8 348
29 Durell S R, Brooks B R and Ben-Naim A 1994 J. Phys. Chem. 98 2198
30 Nelson M T, Humphrey W, Gursoy A, Dalke A, Kalé L V, Skeel R D and Schulten K 1996 The International Journal of Supercomputer Applications and High Performance Computing 10 251
31 Petersen H G 1995 J. Chem. Phys. 103 3668
32 Baker C M, Anisimov V M and MacKerell A D 2011 J. Phys. Chem. B 115 580
33 Lamoureux G, Harder E, Vorobyov I V, Roux B and MacKerell A D 2006 Chem. Phys. Lett. 418 245
34 Kim M, Kreig A, Lee C Y, Rube H T, Calvert J, Song J S and Myong S 2016 Nucleic Acids Research 44 4807
35 Abbasbandy S 2003 Appl. Math. Comput. 145 887
36 Jiang W, Hardy D J, Phillips J C, Mackerell A D Jr, Schulten K and Roux B 2011 J. Phys. Chem. Lett. 2 87
37 Dougherty D A 2007 The Journal of Nutrition 137 1504S
38 Friedman R A and Honig B 1995 Biophys. J. 69 1528
39 Yakovchuk P, Protozanova E and Frank-Kamenetskii M D 2006 Nucleic Acids Research 34 564
40 Savelyev A and MacKerell A D 2014 J. Comput. Chem. 35 1219
41 Cavallari M, Calzolari A, Garbesi A and Di Felice R 2006 J. Phys. Chem. B 110 26337
42 Yurenko Y P, Novotny J, Sklenà\vr V and Marek R 2014 Phys. Chem. Chem. Phys. 16 2072
[1] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[2] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[5] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[6] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Anti-function solution of uniaxial anisotropic Stoner-Wohlfarth model
Kun Zheng(郑坤), Yu Miao(缪宇), Tong Li(李通), Shuang-Long Yang(杨双龙), Li Xi(席力), Yang Yang(杨洋), Dun Zhao(赵敦), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2022, 31(4): 040202.
[9] Induced current of high temperature superconducting loops by combination of exciting coil and thermal switch
Jia-Wen Wang(王佳雯), Yin-Shun Wang(王银顺), Hua Chai(柴华), Ling-Feng Zhu(祝凌峰), and Wei Pi(皮伟). Chin. Phys. B, 2022, 31(3): 037402.
[10] Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept
Xi-Le Wei(魏熙乐), Yu-Lin Bai(白玉林), Jiang Wang(王江), Si-Yuan Chang(常思远), and Chen Liu(刘晨). Chin. Phys. B, 2022, 31(12): 128701.
[11] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[12] Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity
Jing Wang(王静), Hua Li(李华), Xiankai Jiang(姜先凯), Bin Wu(吴斌), Jun Guo(郭俊), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), Haiping Fang(方海平), and Chenqi Xu(许琛琦). Chin. Phys. B, 2022, 31(10): 108702.
[13] Topology of a parity-time symmetric non-Hermitian rhombic lattice
Shumai Zhang(张舒迈), Liang Jin(金亮), and Zhi Song(宋智). Chin. Phys. B, 2022, 31(1): 010312.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
No Suggested Reading articles found!