Abstract Laguerre polynomial's photon-added squeezing vacuum state is constructed by operation of Laguerre polynomial's photon-added operator on squeezing vacuum state. By making use of the technique of integration within an ordered product of operators, we derive the normalization coefficient and the calculation expression of <ala†>. Its statistical properties, such as squeezing, the anti-bunching effect, the sub-Poissonian distribution property, the negativity of Wigner function, etc., are investigated. The influences of the squeezing parameter on quantum properties are discussed. Numerical results show that, firstly, the squeezing effect of the 1-order Laguerre polynomial's photon-added operator exciting squeezing vacuum state is strengthened, but its anti-bunching effect and sub-Poissonian statistical property are weakened with increasing squeezing parameter; secondly, its squeezing effect is similar to that of squeezing vacuum state, but its anti-bunching effect and sub-Poissonian distribution property are stronger than that of squeezing vacuum state. These results show that the operation of Laguerre polynomial's photon-added operator on squeezing vacuum state can enhance its non-classical properties.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.