|
|
Reference-frame-independent quantum key distribution with an untrusted source |
Jia-Ji Li(李家骥)1,2, Yang Wang(汪洋)1,2, Hong-Wei Li(李宏伟)1,2, Wan-Su Bao(鲍皖苏)1,2 |
1 Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China; 2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Reference frame independent quantum key distribution (RFI-QKD) allows two legitimate parties to share the common secret keys with the drift of reference frames. In order to reduce the actual requirements of RFI-QKD protocol on light source and make it more suitable for practical applications, this paper gives a specific description of RFI-QKD protocol with an untrusted source and analyzes the practical security of this protocol based on the two-way “plug and play” structure commonly used in practical systems. In addition, we also investigate the performance of RFI-QKD with an untrusted source considering statistical fluctuations based on Chernoff bound. Using simulations, we compare the secret key rate of RFI-QKD with an untrusted source to RFI-QKD with trusted source. The results show that the performance of RFI-QKD with an untrusted source is similar to that of RFI-QKD with trusted source, and the finite data size clearly effects the performance of our protocol.
|
Received: 11 October 2019
Revised: 23 December 2019
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 61505261, 61675235, 61605248, and 11304397). |
Corresponding Authors:
Wan-Su Bao
E-mail: bws@qiclab.cn
|
Cite this article:
Jia-Ji Li(李家骥), Yang Wang(汪洋), Hong-Wei Li(李宏伟), Wan-Su Bao(鲍皖苏) Reference-frame-independent quantum key distribution with an untrusted source 2020 Chin. Phys. B 29 030303
|
[1] |
Bennett C H and Brassard G 1984 Proceddings of the IEEE International Conference on Computers, Systems and Signal Processing, 1999 Bangalore, India (IEEE, New York, 1984) p. 175
|
[2] |
Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
|
[3] |
Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595
|
[4] |
Guo Y, Su Y, Zhou J, Zhang L and Huang D 2019 Chin. Phys. B 28 010305
|
[5] |
Tang G Z, Sun S H, Chen H, Li C Y and Liang L M 2016 Chin. Phys. Lett. 33 120301
|
[6] |
Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C and Han Z F 2016 Phys. Rev. X 9 021046
|
[7] |
Cui C H, Yin Z Q, Wang R, Chen W, Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 034053
|
[8] |
Qian Y J, He D Y, Wang S, Chen W, Yin Z Q, Guo G C and Han Z F 2019 Optica 6 1178
|
[9] |
Wang S, Chen W, Yin Z Q et al. 2018 Opt. Lett. 43 2030
|
[10] |
Wang S, Yin Z Q, Chau H F, Chen W, Wang C, Guo G C and Han Z F 2018 Quantum Sci. Technol. 3 025006
|
[11] |
Yin Z Q, Wang S, Chen W, Han Y G, Wang R, Guo G C and Han Z F 2018 Nat Commun. 9 457
|
[12] |
Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat Photon. 9 832
|
[13] |
Wang S, Chen W, Yin Z Q et al. 2014 Opt. Express 22 21739
|
[14] |
Wang S, Chen W, Guo F J, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008-1010
|
[15] |
Rarity J G, Tapster P R, Gorman P M and Knight P 2002 New J. Phys. 4 82
|
[16] |
Bonato C, Tomaello A, Deppo V D, Naletto G and Villoresi P 2009 New J. Phys. 11 045017
|
[17] |
Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
|
[18] |
Chen K and Lo H K url = 2007 Quantum Inf. Comput. 7 689
|
[19] |
Bacco D, Ding Y, Dalgaard K, Rottwitt K and Leif K O 2017 Sci. Rep. 7 1
|
[20] |
Sibson P, Erven C, Godfrey M, Miki S, Yamashita T and Fujiwara M 2017 Nat. Commun. 8 13984
|
[21] |
Laing A, Scarani V, Rarity J G and O'Brien J L 2010 Phys. Rev. A 82 012304
|
[22] |
Xue Q and Jiao R 2019 Quantum Inf. Process. 18 313
|
[23] |
Li Y P, Chen W, Wang F X, Yin Z Q, Zhang L, Liu H and Han Z F 2019 Opt. Lett. 44 4523
|
[24] |
Li X, Mao C, Zhu J, Zhang C and Wang Q 2019 Eur. Phys. J. D 73 86
|
[25] |
Zhang H, Zhang C H, Zhang C M, Guo G C and Wang Q 2019 J. Opt. Soc. Am. B 36 959
|
[26] |
Zhang C M, Wang W B, Li H W and Wang Q 2019 Opt. Lett. 44 1226
|
[27] |
Yin Z Q, Wang S, Chen W, Li H W, Guo G C and Han Z F 2014 Quantum Inf. Process. 13 1237
|
[28] |
Zhang C M, Zhu J R and Wang Q 2017 Phys. Rev. A. 95 032309
|
[29] |
Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502
|
[30] |
Wang C, Yin Z Q, Wang S, Chen W, Guo G C and Han Z F 2017 Optica 4 1016
|
[31] |
Liang W Y, Wang S, Li H W, Yin Z Q, Chen W, Yao Y, Huang Z J, Guo G C and Han Z F 2015 Sci. Rep. 4 3617
|
[32] |
Stucki D, Gisin N, Guinnard O, Robordy G and Zbinden H 2002 New J. Phys. 4 41
|
[33] |
Gisin N, Fasel S, Kraus B, Zbinden H and Ribordy G 2006 Phys. Rev. A 73 022320
|
[34] |
Zhao Y, Qi B and Lo H K 2008 Phys. Rev. A 77 052327
|
[35] |
Zhao Y, Qi B, Lo H K and Qian L 2010 New J. Phys. 12 023024
|
[36] |
Tanumoy P, Byung K P, Cho Y W et al. 2017 arXiv:1701.07587v1 [quant-ph]
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|