Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 024501    DOI: 10.1088/1674-1056/ab65b8
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Avalanching patterns of irregular sand particles in continual discrete flow

Ren Han(韩韧)1, Yu-Feng Zhang(张宇峰)1, Ran Li(李然)2, Quan Chen(陈泉)1, Jing-Yu Feng(冯靖禹)1, Ping Kong(孔平)3
1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
3 Shanghai Key Laboratory for Molecular Imaging, Department of Science and Liberal Art, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
Abstract  We investigate the flow patterns of irregular sand particles under avalanching mode in a rotating drum by using the spatial filtering velocimetry technique. By exploring the variations of velocity distribution of granular flow, we find a type of avalanching pattern of irregular sand particles which is similar to that of spherical particles flow. Due to the fact that the initial position of avalanche in this pattern locates at the middle of the drum and the avalanche propagates toward the edge area gradually, we named it as mid-to-edge avalanching pattern. Furthermore, we find another avalanching pattern which slumps from the edge and propagates toward the opposite edge of the flow surface, named as edge-to-edge pattern. By analyzing the temporal and spatial characteristics of these two types of avalanching patterns, we discover that these two types of avalanche patterns are caused by that the avalanching particles constantly perturb the axial adjacent particles. Thus, the particles on the flow surface are involved in avalanching sequentially in order of the axial distance from the initial position.
Keywords:  spatial filtering velocimetry (SFV) method      avalanching pattern      velocity distribution      irregular particles  
Received:  21 October 2019      Revised:  09 November 2019      Accepted manuscript online: 
PACS:  45.70.Ht (Avalanches)  
  45.70.Mg (Granular flow: mixing, segregation and stratification)  
  43.58.Fm (Sound level meters, level recorders, sound pressure, particle velocity, And sound intensity measurements, meters, and controllers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11572201, 91634202, and 11902190).
Corresponding Authors:  Ping Kong     E-mail:  kongp@sumhs.edu

Cite this article: 

Ren Han(韩韧), Yu-Feng Zhang(张宇峰), Ran Li(李然), Quan Chen(陈泉), Jing-Yu Feng(冯靖禹), Ping Kong(孔平) Avalanching patterns of irregular sand particles in continual discrete flow 2020 Chin. Phys. B 29 024501

[1] Midi G D R 2004 Eur. Phys. J. E 14 341
[2] Seiden G and Thomas P J 2011 Rev. Mod. Phys. 83 1323
[3] Kruggel-emden H, Rickelt S, Wirtz S and Scherer V 2008 Powder Technol. 188 153
[4] Cleary P W 2010 Particuology 8 106
[5] Mu J and Perlmutter D D 1980 AICHE J. 26 928
[6] Henein H, Brimacombe J K and Watkinson A P 1985 Metall. Trans. B 16 763
[7] Pollard B L and Henein H 1989 Can. Metall. Q. 28 29
[8] Woodle G R and Munro J M 1993 Powder Technol. 76 241
[9] Van D R, Young B R, Wilson M A and Schmidt S J 1999 Powder Technol. 106 183
[10] Pandey P and Turton R 2005 AAPS Pharm. Sci. Tech. 6 E237
[11] Dubé O, Alizadeh E, Chaouki J and Bertrand F 2013 Chem. Eng. Sci. 101 486
[12] Mou S H, Yang H, Li R, Zhang G H, Sun Q C and Kong P 2019 Powder Technol. 344 1
[13] Song J, Yang H, Li R, Chen Q, Zhang Y J, Wang Y J and Kong P 2019 Powder Technol. 355 172
[14] Pan G J, Zhang D M, Yin Y P and He M H 2006 Chin. Phys. Lett. 23 2811
[15] Daerr A and Douady S 1999 Nature 399 241
[16] Rajchenbach J 2001 Phys. Rev. Lett. 88 014301
[17] Yang H, Zhang B F, Li R, Zheng G and Zivkovic V 2017 Powder Technol. 311 439
[18] Zhang Y J, Yang H, Li R, Chen Q, Sun Q C and Kong P 2019 Powder Technol. 355 333
[19] Gong J M, Yang H, Lin S H, Li R and Zivkovic V 2018 Powder Technol. 324 76
[20] Lin S H, Yang H, Li R, Zheng G and Zivkovic V 2018 Powder Technol. 338 376
[21] Orpe A V and Khakhar D V 2007 J. Fluid Mech. 571 1
[22] Hagemeier T, Roloff C, Bück A and Tsotsas E 2015 Particuology 22 39
[23] Li R, Yang H, Zheng G, Zhang B F, Fei M L and Sun Q C 2016 Powder Technol. 295 167
[24] Yang H, Zhu Y H, Li R and Sun Q C 2019 Particuology (in Press)
[25] Yang H, Jiang G L, Sawe H Y, Davies C, Biggs M J and Zivkovic V 2016 Chem. Eng. Sci. 149 1
[26] Leadbeater T W, Parker D J and Gargiuli J 2012 Particuology 10 146
[27] Stannarius R 2017 Rev. Sci. Instrum. 88 51806
[28] Bergeler S and Krambeer H 2004 Meas. Sci. Technol. 15 1309
[29] Ator J T 1963 J. Opt. Soc. Am. 53 1416
[30] Uddin M S, Inaba H, Itakura Y and Kasahara M 1998 Appl. Opt. 37 6234
[31] Aizu Y and Asakura T 2006 Spatial Filtering Velocimetry: Fundamentals And Applications, Vol. 116 (Newtherlands: Springer Science & Business Media)
[32] Xu C, Zhou B, Yang D, Tang G and Wang S 2008 Meas. Sci. Technol. 19 024005
[33] Li J, Xu C and Wang S 2014 Meas. J. Int. Meas. Confed. 53 194
[1] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[2] Rolling velocity and relative motion of particle detector in local granular flow
Ran Li(李然), Bao-Lin Liu(刘宝林), Gang Zheng(郑刚), and Hui Yang(杨晖). Chin. Phys. B, 2022, 31(11): 114501.
[3] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[4] Influence of an inserted bar on the flow regimes in the hopper
Yi Peng(彭毅), Sheng Zhang(张晟), Mengke Wang(王梦柯), Guanghui Yang(杨光辉), Jiangfeng Wan(万江锋), Liangwen Chen(陈良文), and Lei Yang(杨磊). Chin. Phys. B, 2021, 30(2): 028101.
[5] Collective transport of Lennard–Jones particles through one-dimensional periodic potentials
Jian-hui He(何健辉), Jia-le Wen(温家乐), Pei-rong Chen(陈沛荣), Dong-qin Zheng(郑冬琴), Wei-rong Zhong(钟伟荣). Chin. Phys. B, 2017, 26(7): 070502.
[6] The anisotropy of free path in a vibro-fluidized granular gas
Yifeng Mei(梅一枫), Yanpei Chen(陈延佩), Wei Wang(王维), Meiying Hou(厚美瑛). Chin. Phys. B, 2016, 25(8): 084501.
[7] Molecular dynamics simulations of the nano-droplet impact process on hydrophobic surfaces
Hu Hai-Bao (胡海豹), Chen Li-Bin (陈立斌), Bao Lu-Yao (鲍路瑶), Huang Su-He (黄苏和). Chin. Phys. B, 2014, 23(7): 074702.
[8] Effect of number density on velocity distributions in a driven quasi-two-dimensional granular gas
Sajjad Hussain Shah, Li Yin-Chang(李寅阊), and Hou Mei-Ying (厚美瑛). Chin. Phys. B, 2010, 19(10): 108203.
No Suggested Reading articles found!