Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 024702    DOI: 10.1088/1674-1056/ab5fba
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of square micro-pillar array porosity on the liquid motion of near surface layer

Xiaoxi Qiao(乔小溪)1, Xiangjun Zhang(张向军)2, Ping Chen(陈平)1, Yu Tian(田煜)2, Yonggang Meng(孟永钢)2
1 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Abstract  The influence rules of square micro-pillar array porosity on the liquid motion characteristics of the near-surface layer are investigated by quartz crystal microbalance (QCM). QCM is a powerful and promising technique in studying the interfacial behavior, which exhibits great advantages in investigating the effects of surface microstructure, roughness, and array. In our experiments, three different arrays with the same height of about 280 nm and center distance of 200 μm, but different diameters of about 78 μm, 139 μm, and 179 μm are investigated. The results indicate that when the surface array has a large porosity, its influence on the liquid motion of the near surface layer is slight, thus resulting in a small increase of half-bandwidth variation due to the additional friction energy dissipation. When the surface array has a small porosity, the array tends to make the liquid film trapped in the array oscillating with the substrate, then there may be a layer of liquid film behaving like rigid film, and it also will make the liquid motion near the array layer more complicated. Thus for the #3 surface with a small porosity, both the absolute values of frequency shift |Δf3| and half-bandwidth variation ΔΓ3 increase obviously. The experimental results show good consistence with the theoretical model of Daikhin and Urbakh. This study sheds light on understanding the influence mechanism of surface array porosity on the liquid motion of near-surface layer.
Keywords:  quartz crystal microbalance      square micro-pillar array      wetting state      permeability  
Received:  18 September 2019      Revised:  23 October 2019      Accepted manuscript online: 
PACS:  47.55.dr (Interactions with surfaces)  
  47.54.De (Experimental aspects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51905032), the National Key Research and Development Program of China (Grant No. 2018YFC0810500), and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-18-012A2).
Corresponding Authors:  Xiaoxi Qiao     E-mail:  qxx41051134@126.com

Cite this article: 

Xiaoxi Qiao(乔小溪), Xiangjun Zhang(张向军), Ping Chen(陈平), Yu Tian(田煜), Yonggang Meng(孟永钢) Effects of square micro-pillar array porosity on the liquid motion of near surface layer 2020 Chin. Phys. B 29 024702

[1] Priezjev N V 2011 J. Chemical Physics 135 204704
[2] Yamada T, Hong C, Gregory O J and Faghri M 2011 Microfluid. Nanofluid. 11 45
[3] Jung Y C and Bhushan B 2010 J. Phys. Condens. Matter An Inst. Phys. J. 22 35104
[4] Lyu S, Dang C N, Kim D, Hwang W and Yoon B 2013 Appl. Surf. Sci. 286 206
[5] Ou J, Perot B and Rothstein J P 2004 Phys. Fluids 16 4635
[6] Woolford B, Prince J, Maynes D and Webb B W 2009 Phys. Fluids 21 85106
[7] Lee S H and Kim W B 2016 J. Power Sources 307 38
[8] Anselme K 2000 Biomaterials 21 667
[9] Suh M S, Chae Y H, Kim S S, Hinoki T and Kohyama A 2010 Tribol. Int. 43 1508
[10] Wakuda M, Yamauchi Y, Kanzaki S and Yasuda Y 2003 Wear 254 356
[11] Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) (in Chinese)
[12] Daikhin L and Urbakh M 1996 Langmuir 12 6354
[13] Daikhin L, Gileadi E, Katz G, Tsionsky V, Urbakh M and Zagidulin D 2002 Anal. Chem. 74 554
[14] Qiao X X, Zhang X J, Tian Y and Meng Y G 2016 Appl. Physics Reviews 3 031106
[15] Sahraoui M, Kaviany M, Mechanics A and Arbor A 1992 Int. J. Heat Mass Britain 35 927
[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[3] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[4] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[5] Magnetic properties of Sn-substituted Ni–Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2
M A Ali, M M Uddin, M N I Khan, F U Z Chowdhury, S M Hoque, S I Liba. Chin. Phys. B, 2017, 26(7): 077501.
[6] Hybrid temperature effect on a quartz crystal microbalance resonator in aqueous solutions
Qiang Li(李强), Yu Gu(谷宇), Bin Xie(谢斌). Chin. Phys. B, 2017, 26(6): 067704.
[7] Decoupling technique of patch antenna arrays with shared substrate by suppressing near-field magnetic coupling using magnetic metamaterials
Zhaotang Liu(柳兆堂), Jiafu Wang(王甲富), Shaobo Qu(屈绍波), Jieqiu Zhang(张介秋), Hua Ma(马华), Zhuo Xu(徐卓), Anxue Zhang(张安学). Chin. Phys. B, 2017, 26(4): 047301.
[8] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[9] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[10] High frequency magnetic properties of ferromagnetic thin films and magnetization dynamics of coherent precession
Jiang Chang-Jun (蒋长军), Fan Xiao-Long (范小龙), Xue De-Sheng (薛德胜). Chin. Phys. B, 2015, 24(5): 057504.
[11] Effect of persistent high intraocular pressure on microstructure and hydraulic permeability of trabecular meshwork
Mei Xi (梅曦), Ren Lin (任琳), Xu Qiang (许强), Zheng Wei (郑炜), Liu Zhi-Cheng (刘志成). Chin. Phys. B, 2015, 24(5): 058701.
[12] Magnetic interaction in the metamaterial/magnet system
M. K. Alqadi, F. Y. Alzoubi. Chin. Phys. B, 2014, 23(8): 087506.
[13] Electromagnetic wave absorbing properties and hyperfine interactions of Fe-Cu-Nb-Si-B nanocomposites
Han Man-Gui (韩满贵), Guo Wei (郭韦), Wu Yan-Hui (吴燕辉), Liu Min (刘明), Magundappa L. Hadimani. Chin. Phys. B, 2014, 23(8): 083301.
[14] Influence of magnetic layer thickness on [Fe80Ni20–O/SiO2]n multilayer thin films
Wei Jian-Qing (魏建清), Geng Hao (耿昊), Xu Lei (徐磊), Wang Lai-Sen (王来森), Chen Yuan-Zhi (陈远志), Yue Guang-Hui (岳光辉), Peng Dong-Liang (彭栋梁). Chin. Phys. B, 2014, 23(8): 087504.
[15] Self-biased magnetoelectric responses in magnetostrictive/piezoelectric composites with different high-permeability alloys
Lu Cai-Jiang (鲁彩江), Li Ping (李平), Wen Yu-Mei (文玉梅), Yang Ai-Chao (杨爱超), Yang Chao (杨超), Wang De-Cai (王德才), He Wei (何伟), Zhang Ji-Tao (张吉涛). Chin. Phys. B, 2014, 23(11): 117503.
No Suggested Reading articles found!