INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Chemical vapor deposition growth of crystal monolayer SnS2 with NaCl-assistant |
Xiao-Xu Liu(刘晓旭), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yong-Sheng Wang(王永生), Ming Fu(富鸣) |
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiao Tong University, Beijing 100044, China |
|
|
Abstract As an important member of the two-dimensional layers of metal dichalcogenides family, the two-dimensional (2D) group IV metal chalcogenides (GIVMCs) have been attracting intensive attention. However, the growth of monolayer tin disulfide (SnS2) remains a great challenge contrasted to transition metal dichalcogenides, which have been studied quite maturely. Till date, there have been scant reports on the growth of large-scale and large-size monolayer SnS2. Here, we successfully synthesized monolayer SnS2 crystal on SiO2/Si substrates via NaCl-assisted CVD and the edge can be as long as 80 μm. Optical microscope, Raman spectroscopy, x-ray diffraction, atomic force microscopy (AFM), and energy-dispersion x-ray (EDX) were performed respectively to investigate the morphology, crystallographic structure, and optical property of the 2D SnS2 nanosheets. In addition, we discussed the growing mechanism of the NaCl-assisted CVD method.
|
Received: 24 June 2019
Revised: 12 September 2019
Accepted manuscript online:
|
PACS:
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61527817, 61875236, 61905010, and 61975007), and the Overseas Expertise Introduction Center for Discipline Innovation, 111 Center, China. |
Corresponding Authors:
Da-Wei He
E-mail: dwhe@bjtu.edu.cn
|
Cite this article:
Xiao-Xu Liu(刘晓旭), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yong-Sheng Wang(王永生), Ming Fu(富鸣) Chemical vapor deposition growth of crystal monolayer SnS2 with NaCl-assistant 2019 Chin. Phys. B 28 118101
|
[35] |
Sriv T, Kim K and Cheong H 2018 Sci. Rep. 8 10194
|
[1] |
Rubén M B, Cristina G N, Julio G H and Félix Z 2011 Nanoscale 3 20
|
[36] |
De Groot C H, Gurnani C, Hector A L, Huang R, Jura M, Levason W and Reid G 2012 Chem. Mater. 24 4442
|
[2] |
Butler S Z, Hollen S M, Linyou C, Yi C, Gupta J A, Gutiérrez H R, Heinz T F, Seung Sae H, Jiaxing H and Ismach A F 2013 ACS Nano 7 2898
|
[37] |
Gonzalez J M and Oleynik I I 2016 Phys. Rev. B 94 125443
|
[3] |
Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S and Li L J 2012 Adv. Mater. 24 2320
|
[38] |
Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
|
[4] |
Cong C, Shang J, Wu X, Cao B, Peimyoo N, Qiu C, Sun L and Yu T 2014 Adv. Opt. Mater. 2 131
|
[39] |
Wieting T J and Verble J L 1972 Phys. Rev. B 5 1473
|
[5] |
Hai L, Zongyou Y, Qiyuan H, Hong L, Xiao H, Gang L, Fam D W H, Tok A I Y, Qing Z and Hua Z 2012 Small 8 63
|
[6] |
Tan C and Zhang H 2015 Chem. Soc. Rev. 44 2713
|
[7] |
Lu Q, Yu Y, Ma Q, Chen B and Zhang H 2016 Adv. Mater. 28 1917
|
[8] |
Wu D, Wang Y, Zeng L, Jia C, Wu E, Xu T, Shi Z, Tian Y, Li X and Tsang Y H 2018 ACS Photon. 5 3820
|
[9] |
Zhuo R, Zeng L, Yuan H, Wu D, Wang Y, Shi Z, Xu T, Tian Y, Li X and Tsang Y H 2019 Nano Res. 12 183
|
[10] |
Wu E, Wu D, Jia C, Wang Y, Yuan H, Zeng L, Xu T, Shi Z, Tian Y and Li X 2019 ACS Photon. 6 565
|
[11] |
Zhuo R, Wang Y, Wu D, Lou Z, Shi Z, Xu T, Xu J, Tian Y and Li X 2018 J. Mater. Chem. C 6 299
|
[12] |
Wu D, Guo J, Du J, Xia C, Zeng L, Tian Y, Shi Z, Tian Y, Li X J and Tsang Y H 2019 ACS Nano
|
[13] |
Gong Y, Yuan H, Wu C L, Tang P, Yang S Z, Yang A, Li G, Liu B, van de Groep J and Brongersma M L 2018 Nat. Nanotechnol. 13 294
|
[14] |
Feng J, Chen J, Geng B, Feng H, Li H, Yan D, Zhuo R, Cheng S, Wu Z and Yan P 2011 Appl. Phys. A 103 413
|
[15] |
Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L A, Racke D A, Neupane M R, Wickramaratne D, Lake R K and Parkinson B A 2014 ACS Nano 8 10743
|
[16] |
Rahman A, Kim H J, NoorA-Alam M and Shin Y H 2019 Current Applied Physics
|
[17] |
Su G, Hadjiev V G, Loya P E, Zhang J, Lei S, Maharjan S, Dong P M, Ajayan P, Lou J and Peng H 2014 Nano Lett. 15 506
|
[18] |
Sun Y, Cheng H, Gao S, Sun Z, Liu Q, Liu Q, Lei F, Yao T, He J and Wei S 2012 Angew. Chem. Int. Ed. 51 8727
|
[19] |
Xia J, Zhu D, Wang L, Huang B, Huang X and Meng X M 2015 Adv. Funct. Mater. 25 4255
|
[20] |
Ahn J H, Lee M J, Heo H, Sung J H, Kim K, Hwang H and Jo M H 2015 Nano Lett. 15 3703
|
[21] |
Liu J, Liu X, Chen Z, Miao L, Liu X, Li B, Tang L, Chen K, Liu Y and Li J 2019 Nano Res. 12 463
|
[22] |
Song H S, Li S L, Gao L, Xu Y, Ueno K, Tang J, Cheng Y B and Tsukagoshi K 2013 Nanoscale 5 9666
|
[23] |
Li Q, Wei A, Guo Z, Liu J, Zhao Y and Xiao Z 2018 J. Mater. Sci.:Mater. Electron. 29 16057
|
[24] |
Kim C, Park J C, Choi S Y, Kim Y, Seo S Y, Park T E, Kwon S H, Cho B and Ahn J H 2018 Small 14 1704116
|
[25] |
Řičica T, Střižík L, Dostál L, Bouška M, Vlček M, Beneš L, Wágner T and Jambor R 2015 Appl. Organomet. Chem. 29 176
|
[26] |
Liu Q, Zhou Y, Kou J, Chen X, Tian Z, Gao J, Yan S and Zou Z 2010 J. Am. Chem. Soc. 132 14385
|
[27] |
Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H and Lei J 2018 Nature 556 355
|
[28] |
Ye G, Gong Y, Lei S, He Y, Li B, Zhang X, Jin Z, Dong L, Lou J and Vajtai R 2017 Nano Res. 10 2386
|
[29] |
Burton L A, Colombara D, Abellon R D, Grozema F C, Peter L M, Savenije T J, Dennler G and Walsh A 2013 Chem. Mater. 25 4908
|
[30] |
Zhang H, van Pelt T, Mehta A N, Bender H, Radu I, Caymax M, Vandervorst W and Delabie A 2018 2D Materials 5 035006
|
[31] |
Zhou X, Zhang Q, Gan L, Li H and Zhai T 2016 Adv. Funct. Mater. 26 4405
|
[32] |
Wang Z and Pang F 2017 RSC Adv. 7 29080
|
[33] |
Seminovski Y, Palacios P and Wahnón P 2013 Thin Solid Films 535 387
|
[34] |
Bhatt S V, Deshpande M P, Sathe V and Chaki S H 2015 Solid State Commun. 201 54
|
[35] |
Sriv T, Kim K and Cheong H 2018 Sci. Rep. 8 10194
|
[36] |
De Groot C H, Gurnani C, Hector A L, Huang R, Jura M, Levason W and Reid G 2012 Chem. Mater. 24 4442
|
[37] |
Gonzalez J M and Oleynik I I 2016 Phys. Rev. B 94 125443
|
[38] |
Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
|
[39] |
Wieting T J and Verble J L 1972 Phys. Rev. B 5 1473
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|