CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
First-principles studies on carbon diffusion in tungsten |
Chi Song(宋驰)1, Xiang-Shan Kong(孔祥山)2, C S Liu(刘长松)2 |
1 College of Science, Jinling Institute of Technology, Nanjing 211169, China; 2 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract The carbon diffusivity in tungsten is one fundamental and essential factor in the application of tungsten as plasma-facing materials for fusion reactors and substrates for diamond growth. However, data on this are quite scarce and largely scattered. We perform a series of first-principles calculations to predict the diffusion parameters of carbon in tungsten, and evaluate the effect of temperature on them by introducing lattice expansion and phonon vibration. The carbon atom prefers to occupy octahedral interstitial site rather than tetrahedral interstitial site, and the minimum energy path for its diffusion goes through a tetrahedral site. The temperature has little effect on the pre-exponential factor but a marked effect on the activation energy, which linearly increases with the temperature. Our predicted results are well consistent with the experimental data obtained at high temperature (>1800 K) but significantly larger than the experimental results at low temperature (<1800 K).
|
Received: 19 June 2019
Revised: 28 September 2019
Accepted manuscript online:
|
PACS:
|
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
61.82.Bg
|
(Metals and alloys)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFE0308102), the National Natural Science Foundation of China (Grant Nos. 11735015 and 51771185), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB140008), and Jinling Institute of Technology, China (Grant Nos. jit-fhxm-201601 and jit-b-201616). |
Corresponding Authors:
Xiang-Shan Kong
E-mail: xskong@issp.ac.cn
|
Cite this article:
Chi Song(宋驰), Xiang-Shan Kong(孔祥山), C S Liu(刘长松) First-principles studies on carbon diffusion in tungsten 2019 Chin. Phys. B 28 116106
|
[35] |
Eyring H 1935 J. Chem. Phys. 3 107
|
[1] |
Teschner D, Borsodi J, Wootsch A, Revay Z, Havecker M, Knop-Gericke A, Jackson S D and Schlogl R 2008 Science 320 86
|
[36] |
Eyring H 1938 Trans. Faraday Soc. 34 41
|
[2] |
Hiraoka Y, Imamura K, Kadokura T and Yamamoto Y 2010 J. Alloys Compd. 489 42
|
[37] |
Wigner E 1932 Z. Phys. Chem. Abt. B 19 203
|
[3] |
Zhang S, Wang S, Li W, Zhu Y and Chen Z 2011 J. Alloys Compd. 509 8327
|
[38] |
Wigner E 1938 Trans. Faraday Soc. 34 29
|
[4] |
Song G M, Zhou Y and Wang Y J 2002 J. Mater. Sci. 37 3541
|
[39] |
Wert C and Zener C 1949 Phys. Rev. 76 1169
|
[5] |
Hiraoka Y 1990 Trans. JIM 31 861
|
[40] |
Lu X G, Selleby M and Sundman B 2005 CALPHAD:Comput. Coupling Phase Diagrams Thermochem. 29 68
|
[6] |
Zhou H B and Jin S 2013 Chin. Phys. B 22 076104
|
[41] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[7] |
Federici G, Andrew P, Barabaschi P, et al. 2003 J. Nucl. Mater. 313-316 11
|
[42] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[8] |
Fu B Q, Lai W S and Yuan Y 2013 Chin. Phys. B 22 126201
|
[43] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1993 Phys. Rev. B 48 4978
|
[9] |
Rieth M, Dudarev S L, Gonzalez de Vicente S M, et al. 2013 J. Nucl. Mater. 432 482
|
[44] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[10] |
Xu M Y, Luo L M, Lin J S, Xu Y, Zan X, Xu Q, Tokunaga K, Zhu X Y and Wu Y C 2018 J. Alloys Compd. 766 784
|
[45] |
Kittel C 1996 Introduction Solid State Physics (7th Edn.) (New York:Wiley)
|
[11] |
Yang T, Wei Q, Qi Y and Yu Z 2015 Diam. Relat. Mater. 52 49
|
[46] |
Zhou H B, Jin S, Zhang Y, Lu G H and Liu F 2012 Phys. Rev. Lett. 109 135502
|
[12] |
Kovenskii I 1964 Diffus. Body Cent. Cubic Met. Pap. Int. Conf. (Gatlinburgh TN) p 283
|
[13] |
Shepela A 1972 J. Less-Common. Met. 26 33
|
[14] |
Aleksandrov L N and Shchelkonogov V 1964 Sov. Powder Metall. Met. Ceramic. 288
|
[15] |
Nakonechnikov A I, Pavlinov L V and Bykov V N 1966 Phys. Met. Metallogr. 22 73
|
[16] |
Rawlings K, Foulias S and Hopkins B 1981 Surf. Sci. 109 513
|
[17] |
Aleksandrov L N 1963 Int. Chem. Eng. 3 108
|
[18] |
Shchelkonogov V Y 1978 Elektron. Svoistva Tverd. Tel. Fazovye Prevrashch. 115
|
[19] |
Eckstein W and Shulga V I 1999 Nucl. Instrum. Meth. B 153 415
|
[20] |
Schmid K and Roth J 2002 J. Nucl. Mater. 302 96
|
[21] |
Qiao L, Wang S M, Zhang X M, Hu X Y, Zeng Y and Zheng W T 2014 Chin. Phys. B 23 086802
|
[22] |
Nama H O, Hwang I S, Lee K H and Kim J H 2013 Corros. Sci. 75 248
|
[23] |
Chen Q, Yao Q, Liu Y L, Han Q F and Ding F 2017 Int. J. Hydrog. Energy 42 11560
|
[24] |
Shang S L, Fang H Z, Wanga J, Guo C P, Wang Y, Jablonski P D, Du Y and Liu Z K 2014 Corros. Sci. 83 94
|
[25] |
Ling C and Sholl D S 2009 Phys. Rev. B 80 214202
|
[26] |
Heinola K and Ahlgren T 2010 J. Appl. Phys. 107 113531
|
[27] |
Qiu M J, Zhai L, Cui J C, Fu B Q, Li M and Hou Q 2018 Chin. Phys. B 27 073103
|
[28] |
Kong X S, Wang S, Wu X B, You Y W, Liu C S, Fang Q F, Chen J L and Luo G N 2015 Acta Mater. 84 426
|
[29] |
Liu Y L, Ding F, Luo G N and Chen C A 2017 Nucl. Fusion 57 126024
|
[30] |
Nguyen-Manh D 2009 Adv. Mater. Res. 59 253
|
[31] |
Liu Y L, Zhou H B, Jin S, Zhang Y and Lu G H 2010 J. Phys.:Condens. Matter 22 445504
|
[32] |
Kong X S, You Y W, Song C, Fang Q F, Chen J L, Luo G N and Liu C S 2012 J. Nucl. Mater. 430 270
|
[33] |
Becquart C S and Domain C 2012 Curr. Opin. Solid. State. Mater. Sci. 16 115
|
[34] |
Philibert J 1991 Atom Movements:Diffusion and Mass Transports in Solids, Monographies de Physique (Les Ulis, France:éditions de Physique)
|
[35] |
Eyring H 1935 J. Chem. Phys. 3 107
|
[36] |
Eyring H 1938 Trans. Faraday Soc. 34 41
|
[37] |
Wigner E 1932 Z. Phys. Chem. Abt. B 19 203
|
[38] |
Wigner E 1938 Trans. Faraday Soc. 34 29
|
[39] |
Wert C and Zener C 1949 Phys. Rev. 76 1169
|
[40] |
Lu X G, Selleby M and Sundman B 2005 CALPHAD:Comput. Coupling Phase Diagrams Thermochem. 29 68
|
[41] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[42] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[43] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1993 Phys. Rev. B 48 4978
|
[44] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[45] |
Kittel C 1996 Introduction Solid State Physics (7th Edn.) (New York:Wiley)
|
[46] |
Zhou H B, Jin S, Zhang Y, Lu G H and Liu F 2012 Phys. Rev. Lett. 109 135502
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|