Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 116106    DOI: 10.1088/1674-1056/ab4bb9
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles studies on carbon diffusion in tungsten

Chi Song(宋驰)1, Xiang-Shan Kong(孔祥山)2, C S Liu(刘长松)2
1 College of Science, Jinling Institute of Technology, Nanjing 211169, China;
2 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  The carbon diffusivity in tungsten is one fundamental and essential factor in the application of tungsten as plasma-facing materials for fusion reactors and substrates for diamond growth. However, data on this are quite scarce and largely scattered. We perform a series of first-principles calculations to predict the diffusion parameters of carbon in tungsten, and evaluate the effect of temperature on them by introducing lattice expansion and phonon vibration. The carbon atom prefers to occupy octahedral interstitial site rather than tetrahedral interstitial site, and the minimum energy path for its diffusion goes through a tetrahedral site. The temperature has little effect on the pre-exponential factor but a marked effect on the activation energy, which linearly increases with the temperature. Our predicted results are well consistent with the experimental data obtained at high temperature (>1800 K) but significantly larger than the experimental results at low temperature (<1800 K).
Keywords:  metals and alloys      diffusion      computer simulations  
Received:  19 June 2019      Revised:  28 September 2019      Accepted manuscript online: 
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFE0308102), the National Natural Science Foundation of China (Grant Nos. 11735015 and 51771185), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB140008), and Jinling Institute of Technology, China (Grant Nos. jit-fhxm-201601 and jit-b-201616).
Corresponding Authors:  Xiang-Shan Kong     E-mail:  xskong@issp.ac.cn

Cite this article: 

Chi Song(宋驰), Xiang-Shan Kong(孔祥山), C S Liu(刘长松) First-principles studies on carbon diffusion in tungsten 2019 Chin. Phys. B 28 116106

[35] Eyring H 1935 J. Chem. Phys. 3 107
[1] Teschner D, Borsodi J, Wootsch A, Revay Z, Havecker M, Knop-Gericke A, Jackson S D and Schlogl R 2008 Science 320 86
[36] Eyring H 1938 Trans. Faraday Soc. 34 41
[2] Hiraoka Y, Imamura K, Kadokura T and Yamamoto Y 2010 J. Alloys Compd. 489 42
[37] Wigner E 1932 Z. Phys. Chem. Abt. B 19 203
[3] Zhang S, Wang S, Li W, Zhu Y and Chen Z 2011 J. Alloys Compd. 509 8327
[38] Wigner E 1938 Trans. Faraday Soc. 34 29
[4] Song G M, Zhou Y and Wang Y J 2002 J. Mater. Sci. 37 3541
[39] Wert C and Zener C 1949 Phys. Rev. 76 1169
[5] Hiraoka Y 1990 Trans. JIM 31 861
[40] Lu X G, Selleby M and Sundman B 2005 CALPHAD:Comput. Coupling Phase Diagrams Thermochem. 29 68
[6] Zhou H B and Jin S 2013 Chin. Phys. B 22 076104
[41] Blöchl P E 1994 Phys. Rev. B 50 17953
[7] Federici G, Andrew P, Barabaschi P, et al. 2003 J. Nucl. Mater. 313-316 11
[42] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[8] Fu B Q, Lai W S and Yuan Y 2013 Chin. Phys. B 22 126201
[43] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1993 Phys. Rev. B 48 4978
[9] Rieth M, Dudarev S L, Gonzalez de Vicente S M, et al. 2013 J. Nucl. Mater. 432 482
[44] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[10] Xu M Y, Luo L M, Lin J S, Xu Y, Zan X, Xu Q, Tokunaga K, Zhu X Y and Wu Y C 2018 J. Alloys Compd. 766 784
[45] Kittel C 1996 Introduction Solid State Physics (7th Edn.) (New York:Wiley)
[11] Yang T, Wei Q, Qi Y and Yu Z 2015 Diam. Relat. Mater. 52 49
[46] Zhou H B, Jin S, Zhang Y, Lu G H and Liu F 2012 Phys. Rev. Lett. 109 135502
[12] Kovenskii I 1964 Diffus. Body Cent. Cubic Met. Pap. Int. Conf. (Gatlinburgh TN) p 283
[13] Shepela A 1972 J. Less-Common. Met. 26 33
[14] Aleksandrov L N and Shchelkonogov V 1964 Sov. Powder Metall. Met. Ceramic. 288
[15] Nakonechnikov A I, Pavlinov L V and Bykov V N 1966 Phys. Met. Metallogr. 22 73
[16] Rawlings K, Foulias S and Hopkins B 1981 Surf. Sci. 109 513
[17] Aleksandrov L N 1963 Int. Chem. Eng. 3 108
[18] Shchelkonogov V Y 1978 Elektron. Svoistva Tverd. Tel. Fazovye Prevrashch. 115
[19] Eckstein W and Shulga V I 1999 Nucl. Instrum. Meth. B 153 415
[20] Schmid K and Roth J 2002 J. Nucl. Mater. 302 96
[21] Qiao L, Wang S M, Zhang X M, Hu X Y, Zeng Y and Zheng W T 2014 Chin. Phys. B 23 086802
[22] Nama H O, Hwang I S, Lee K H and Kim J H 2013 Corros. Sci. 75 248
[23] Chen Q, Yao Q, Liu Y L, Han Q F and Ding F 2017 Int. J. Hydrog. Energy 42 11560
[24] Shang S L, Fang H Z, Wanga J, Guo C P, Wang Y, Jablonski P D, Du Y and Liu Z K 2014 Corros. Sci. 83 94
[25] Ling C and Sholl D S 2009 Phys. Rev. B 80 214202
[26] Heinola K and Ahlgren T 2010 J. Appl. Phys. 107 113531
[27] Qiu M J, Zhai L, Cui J C, Fu B Q, Li M and Hou Q 2018 Chin. Phys. B 27 073103
[28] Kong X S, Wang S, Wu X B, You Y W, Liu C S, Fang Q F, Chen J L and Luo G N 2015 Acta Mater. 84 426
[29] Liu Y L, Ding F, Luo G N and Chen C A 2017 Nucl. Fusion 57 126024
[30] Nguyen-Manh D 2009 Adv. Mater. Res. 59 253
[31] Liu Y L, Zhou H B, Jin S, Zhang Y and Lu G H 2010 J. Phys.:Condens. Matter 22 445504
[32] Kong X S, You Y W, Song C, Fang Q F, Chen J L, Luo G N and Liu C S 2012 J. Nucl. Mater. 430 270
[33] Becquart C S and Domain C 2012 Curr. Opin. Solid. State. Mater. Sci. 16 115
[34] Philibert J 1991 Atom Movements:Diffusion and Mass Transports in Solids, Monographies de Physique (Les Ulis, France:éditions de Physique)
[35] Eyring H 1935 J. Chem. Phys. 3 107
[36] Eyring H 1938 Trans. Faraday Soc. 34 41
[37] Wigner E 1932 Z. Phys. Chem. Abt. B 19 203
[38] Wigner E 1938 Trans. Faraday Soc. 34 29
[39] Wert C and Zener C 1949 Phys. Rev. 76 1169
[40] Lu X G, Selleby M and Sundman B 2005 CALPHAD:Comput. Coupling Phase Diagrams Thermochem. 29 68
[41] Blöchl P E 1994 Phys. Rev. B 50 17953
[42] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[43] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1993 Phys. Rev. B 48 4978
[44] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[45] Kittel C 1996 Introduction Solid State Physics (7th Edn.) (New York:Wiley)
[46] Zhou H B, Jin S, Zhang Y, Lu G H and Liu F 2012 Phys. Rev. Lett. 109 135502
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[3] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[4] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[5] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[6] Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles
Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳). Chin. Phys. B, 2022, 31(4): 040204.
[7] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[8] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[9] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[10] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[11] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[12] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[13] A new simplified ordered upwind method for calculating quasi-potential
Qing Yu(虞晴) and Xianbin Liu(刘先斌). Chin. Phys. B, 2022, 31(1): 010502.
[14] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[15] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
No Suggested Reading articles found!