Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 114701    DOI: 10.1088/1674-1056/ab48f0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Relaxation-rate formula for the entropic lattice Boltzmann model

Weifeng Zhao(赵伟峰)1, Wen-An Yong(雍稳安)2
1 Department of Applied Mathematics, University of Science and Technology Beijing, Beijing 100083, China;
2 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
Abstract  A relaxation-rate formula is presented for the entropic lattice Boltzmann model (ELBM) – a discrete kinetic theory for hydrodynamics. The simple formula not only guarantees the discrete time H-theorem but also gives full consideration to the consistency with hydrodynamics. The relaxation rate calculated with the formula effectively characterizes the drastic changes of the flow fields. By using this formula, the computational cost of the ELBM is significantly reduced and the model now can be efficiently used for a broad range of applications including high Reynolds number flows.
Keywords:  entropic lattice Boltzmann model      relaxation-rate formula  
Received:  21 June 2019      Revised:  09 August 2019      Accepted manuscript online: 
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  02.70.-c (Computational techniques; simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11471185, 11801030, and 11861131004).
Corresponding Authors:  Wen-An Yong     E-mail:  wayong@tsinghua.edu.cn

Cite this article: 

Weifeng Zhao(赵伟峰), Wen-An Yong(雍稳安) Relaxation-rate formula for the entropic lattice Boltzmann model 2019 Chin. Phys. B 28 114701

[1] Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics, Beyond (Oxford:Oxford University Press)
[2] Guo Z and Shu C 2013 Lattice Boltzmann Method and its Applications in Engineering (Singapore:Word Scientific Publishing Company)
[3] Benzi R, Succi S and Vergassola M 1992 Phys. Rep. 222 145
[4] Chen S and Doolen G D 1998 Ann. Rev. Fluid Mech. 30 329
[5] Aidun C K and Clausen J R 2010 Ann. Rev. Fluid Mech. 42 439
[6] Liang H, Chai Z and Shi B 2016 Acta Phys. Sin. 65 204701(in Chinese)
[7] Li Y, Su T, Liang H and Xu J R 2018 Acta Phys. Sin. 67 224701(in Chinese)
[8] Sun D K, Chai Z H, Li Q and Li G 2018 Chin. Phys. B 27 088105
[9] Zhuo C and Sagaut P 2017 Phys. Rev. E 95 063301
[10] Ansumali S and Karlin I V 2000 Phys. Rev. E 62 7999
[11] Boghosian B M, Yepez J, Coveney P V and Wagner A 2001 Phil. Trans. R. Soc. Lond. A 457 2007
[12] Karlin I V, Gorban A N, Succi S and Boffi V 1998 Phys. Rev. Lett. 81 6
[13] Karlin I V, Ferrante A and Öttinger H C 1999 Europhys. Lett. 47 182
[14] Ansumali S and Karlin I V 2002 Phys. Rev. E 65 056312
[15] Ansumali S and Karlin I V 2002 J. Stat. Phys. 107 291
[16] Ansumali S, Karlin I V and Öttinger H C 2003 Europhys. Lett. 63 798
[17] Boghosian B M, Love P J and Yepez J 2004 Phil. Trans. R. Soc. Lond. A 362 1691
[18] Chikatamarla S S, Ansumali S and Karlin I V 2006 Phys. Rev. Lett. 97 010201
[19] Keating B, Vahala G, Yepez J, Soe M and Vahala L 2007 Phys. Rev. E 75 036712
[20] Karlin I V, Bösch F and Chikatamarla S S 2014 Phys. Rev. E 90 031302(R)
[21] Atif M, Kolluru P K, Thantanapally C and Ansumali S 2017 Phys. Rev. Lett. 119 240602
[22] Chikatamarla S S, Frouzakis C E, Karlin I V, Tomboulides A G, Boulouchos K B 2010 J. Fluid Mech. 656 298
[23] Dorschner B, B" osch F, Chikatamarla S S, Boulouchos K and Karlin I V 2016 J. Fluid Mech. 801 623
[24] Moqaddam A M, Chikatamarla S S and Karlin I V 2016 Phys. Fluids 28 022106
[25] Moqaddam A M, Chikatamarla S S and Karlin I V 2015 Phys. Rev. E 92 023308
[26] Wöhrwag M, Semprebon C, Moqaddam A M, Karlin I V and Kusumaatmaja H 2018 Phys. Rev. Lett. 120 234501
[27] Frapolli N, Chikatamarla S S and Karlin I V 2015 Phys. Rev. E 92 061301(R)
[28] Dorschner B, Bösch F and Karlin I V 2018 Phys. Rev. Lett. 121 130602
[29] Atif M, Namburi M and Ansumali S 2018 Phys. Rev. E 98 053311
[30] Tosi F, Ubertini S, Succi S and Karlin I V 2007 J. Sci. Comput. 30 369
[31] Brownlee R A, Gorban A N and Levesley J 2007 Phys. Rev. E 75 036711
[32] Qian Y H, d'Humiéres D and Lallemand P 1992 Europhys. Lett. 17 479
[33] Minion M L and Brown D L 1997 J. Comput. Phys. 138 734
[34] A Mazloomi M, Chikatamarla S S and Karlin I V 2015 Phys. Rev. Lett. 114 174502
[1] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[2] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[3] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Analysis of natural frequency for imaging interface in liquid lens
Na Xie(谢娜). Chin. Phys. B, 2021, 30(10): 104702.
[6] An improved global-direction stencil based on the face-area-weighted centroid for the gradient reconstruction of unstructured finite volume methods
Ling-Fa Kong(孔令发), Yi-Dao Dong(董义道)†, Wei Liu(刘伟), and Huai-Bao Zhang(张怀宝). Chin. Phys. B, 2020, 29(10): 100203.
[7] Improved spatial filtering velocimetry and its application in granular flow measurement
Ping Kong(孔平), Bi-De Wang(王必得), Peng Wang(王蓬), Zivkovic V, Jian-Qing Zhang(张建青). Chin. Phys. B, 2020, 29(7): 074201.
[8] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[9] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[10] A novel particle tracking velocimetry method for complex granular flow field
Bi-De Wang(王必得), Jian Song(宋健), Ran Li(李然), Ren Han(韩韧), Gang Zheng(郑刚), Hui Yang(杨晖). Chin. Phys. B, 2020, 29(1): 014207.
[11] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[12] Stabilized seventh-order dissipative compact scheme for two-dimensional Euler equations
Jia-Xian Qin(秦嘉贤), Ya-Ming Chen(陈亚铭), Xiao-Gang Deng(邓小刚). Chin. Phys. B, 2019, 28(10): 104701.
[13] On-node lattices construction using partial Gauss-Hermite quadrature for the lattice Boltzmann method
Huanfeng Ye(叶欢锋), Zecheng Gan(干则成), Bo Kuang(匡波), Yanhua Yang(杨燕华). Chin. Phys. B, 2019, 28(5): 054702.
[14] Multi-bubble motion behavior of electric field based on phase field model
Chang-Sheng Zhu(朱昶胜), Dan Han(韩丹), Li Feng(冯力), Sheng Xu(徐升). Chin. Phys. B, 2019, 28(3): 034701.
[15] Derivation of lattice Boltzmann equation via analytical characteristic integral
Huanfeng Ye(叶欢锋), Bo Kuang(匡波), Yanhua Yang(杨燕华). Chin. Phys. B, 2019, 28(1): 014701.
No Suggested Reading articles found!