Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 114302    DOI: 10.1088/1674-1056/ab4d41
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simulation of acoustic fields emitted by ultrasonic phased array in austenitic steel weld

Zhong-Cun Guo(郭忠存)1,2, Shou-Guo Yan(阎守国)1, Bi-Xing Zhang(张碧星)1,2
1 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Ultrasonic inspection of austenitic steel weld is a great challenge due to skewed and distorted beam in such a highly anisotropic and inhomogeneous material. To improve the ultrasonic measurement in this situation, it is essential to have an in-depth understanding of ultrasound characteristics in austenitic steel weld. To meet such a need, in the present study we propose a method which combines the weld model, Dijkstra's path-finding algorithm and Gaussian beam equivalent point source model to calculate the acoustic fields from ultrasonic phased array in such a weld. With this method, the acoustic field in a steel-austenitic weld-steel three-layered structure for a linear phase array transducer is calculated and the propagation characteristics of ultrasound in weld are studied. The research results show that the method proposed here is capable of calculating the acoustic field in austenitic weld. Additionally, beam steering and focusing can be still realized in the austenitic steel weld and the beam distortion is more severe in the middle of weld than at other positions.
Keywords:  simulation of acoustic field      ultrasonic phased array      austenitic steel weld  
Received:  01 September 2019      Revised:  17 September 2019      Accepted manuscript online: 
PACS:  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.38.+n (Transduction; acoustical devices for the generation and reproduction of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474308, 11574343, and 11774377).
Corresponding Authors:  Shou-Guo Yan     E-mail:  yanshouguo@mail.ioa.ac.cn

Cite this article: 

Zhong-Cun Guo(郭忠存), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星) Simulation of acoustic fields emitted by ultrasonic phased array in austenitic steel weld 2019 Chin. Phys. B 28 114302

[1] Kupperman D S and Reimann K J 2005 IEEE Trans. Sonics & Ultrason. 27 7
[2] Halkjær S, Sorensen M P and Kristensen W D 2000 Ultrasonics 38 256
[3] Liu Q W and Wirdelius H 2014 Modelling and Simulation in Engineering 2014 637476
[4] Fereidooni B, Morovvati M R and Sadough-Vanini S A 2018 Ultrasonics 88 137
[5] Lhuillier P E, Chassignole B, Oudaa M, et al. 2017 Ultrasonics 78 40
[6] Silk M G 1981 Ultrasonics 19 208
[7] Ogilvy J A 1985 Non-Destructive Test. Int. 18 67
[8] Ogilvy J A 1986 Ultrasonics 24 337
[9] Spies M 2000 NDT & E Int. 33 155
[10] Ye J, Kim H J, Song S J, Kang S S, Kim K and Song M H 2011 Ndt & E Int. 44 290
[11] Kolkoori S R, Rahman M U, Chinta P K, Ktreutzbruck M, Rethmeier M and Prager J 2013 Ultrasonics 53 396
[12] Nowers O, Duxbury D J, Zhang J and Drankwater B W 2014 Ndt & E Int. 61 58
[13] Nowers O, Duxbury D J and Drinkwater B W 2016 Ndt & E Int. 79 98
[14] Dijkstra E 1959 Numer. Math. 1 269
[15] Schmmer L W 2015 Fundamentals of Ultrasonic Phased Arrays (New York:Springer) pp. 138-146
[16] Wen J J and Breazeale M A 1988 J. Acoust. Soc. Am. 83 1752
[17] Duan X M, Zhao X Y and Sun H F 2014 Acta Phys. Sin. 63 014301(in Chinese)
[18] Guo W J, Chen Y X, Jin Y and Wang Z B 2013 Appl. Acoustics 32 354
[19] Han P, Wang Z B and Chen Y X 2010 Transducer Microsyst. Technol. 29 22(in Chinese)
[20] Park J S, Song S J and Kim H J 2006 Solid State Phenom. 110 163
[21] Zhao X Y, Gang T and Zhang B X 2008 Acta Acoustic 33 475(in Chinese)
[22] Zhao X Y and Gang T 2009 Ultrasonics 49 126
[23] Huang R J and Schmerr L W 2005 Res. Nondestr. Eval. 16 143
[24] Huang R J, Schmerr L W and Sedov A 2007 Res. Nondestr. Eval. 18 193
[25] Huang R J, Schmerr L W and Sedov A 2007 Am. Inst. Phys. 894 751
[26] Song S J and Kim C H 2002 Ultrasonics 40 519
[1] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[4] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[5] An improved lumped parameter model predicting attenuation of earmuff with air leakage
Xu Zhong(仲旭), Zhe Chen(陈哲), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(11): 114301.
[6] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[7] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[8] Synthetical optimization of the structure dimension for the thermoacoustic regenerator
Huifang Kang(康慧芳), Lingxiao Zhang(张凌霄), Jun Shen(沈俊),Xiachen Ding(丁夏琛), Zhenxing Li(李振兴), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(3): 034301.
[9] Nearfield acoustic holography in a moving medium based on particle velocity input using nonsingular propagator
Bi-Chun Dong(董必春), Run-Mei Zhang(张润梅), Bin Yuan(袁彬), and Chuan-Yang Yu(俞传阳). Chin. Phys. B, 2022, 31(2): 024303.
[10] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[11] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[12] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[13] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[14] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[15] Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2020, 29(3): 034304.
No Suggested Reading articles found!