Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 117101    DOI: 10.1088/1674-1056/ab4d3b
Special Issue: TOPICAL REVIEW — Topological semimetals
TOPICAL REVIEW—Topological semimetals Prev   Next  

Stiefel-Whitney classes and topological phases in band theory

Junyeong Ahn1,2,3, Sungjoon Park1,2,3, Dongwook Kim4, Youngkuk Kim4, Bohm-Jung Yang1,2,3
1 Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea;
2 Center for Correlated Electron Systems, Institute for Basic Science(IBS), Seoul 08826, Korea;
3 Center for Theoretical Physics(CTP), Seoul National University, Seoul 08826, Korea;
4 Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
Abstract  We review the recent progress in the study of topological phases in systems with space-time inversion symmetry IST. IST is an anti-unitary symmetry which is local in momentum space and satisfies IST2=1 such as PT in two dimensions (2D) and three dimensions (3D) without spin-orbit coupling and C2T in 2D with or without spin-orbit coupling, where P, T, C2 indicate the inversion, time-reversal, and two-fold rotation symmetries, respectively. Under IST, the Hamiltonian and the periodic part of the Bloch wave function can be constrained to be real-valued, which makes the Berry curvature and the Chern number vanish. In this class of systems, gapped band structures of real wave functions can be topologically distinguished by the Stiefel-Whitney numbers instead. The first and second Stiefel-Whitney numbers w1 and w2, respectively, are the corresponding invariants in 1D and 2D, which are equivalent to the quantized Berry phase and the Z2 monopole charge, respectively. We first describe the topological phases characterized by the first Stiefel-Whitney number, including 1D topological insulators with quantized charge polarization, 2D Dirac semimetals, and 3D nodal line semimetals. Next we review how the second Stiefel-Whitney class characterizes the 3D nodal line semimetals carrying a Z2 monopole charge. In particular, we explain how the second Stiefel-Whitney number w2, the Z2 monopole charge, and the linking number between nodal lines are related. Finally, we review the properties of 2D and 3D topological insulators characterized by the nontrivial second Stiefel Whitney class.
Keywords:  topological      semimetal  
Received:  30 March 2019      Revised:  30 September 2019      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.20.-r (Electron states at surfaces and interfaces)  
Corresponding Authors:  Bohm-Jung Yang     E-mail:  bjyang@snu.ac.kr

Cite this article: 

Junyeong Ahn, Sungjoon Park, Dongwook Kim, Youngkuk Kim, Bohm-Jung Yang Stiefel-Whitney classes and topological phases in band theory 2019 Chin. Phys. B 28 117101

[32] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[33] Kim J, Baik S S, Jung S W, Sohn Y, Ryu S H, Choi H J, Yang B J and Kim K S 2017 Phys. Rev. Lett. 119 226801
[2] Armitage N, Mele E and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[34] Park S and Yang B J 2017 Phys. Rev. B 96 125127
[3] Murakami S 2007 New Journal of Physics 9 356
[35] Chen Y, Xie Y, Yang S A, Pan H, Zhang F, Cohen M L and Zhang S 2015 Nano Lett. 15 6974
[4] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Physical Review B 83 205101
[36] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108
[5] Fang C and Fu L 2015 Phys. Rev. B 91 161105
[37] Xie L S, Schoop L M, Seibel E M, Gibson Q D, Xie W and Cava R J 2015 Apl Mater. 3 083602
[6] Ahn J and Yang B J 2017 Phys. Rev. Lett. 118 156401
[38] Chan Y H, Chiu C K, Chou M Y and Schnyder A P 2016 Phys. Rev. B 93 205132
[7] Ahn J, Kim D, Kim Y and Yang B J 2018 Phys. Rev. Lett. 121 106403
[39] Kim Y, Wieder B J, Kane C L and Rappe A M 2015 Phys. Rev. Lett. 115 036806
[40] Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[8] Bouhon A, Slager R J and Bzdusek T 2019 arXiv:1907.10611
[41] Fang C, Weng H, Dai X and Fang Z 2016 Chin. Phys. B 25 117106
[9] Nakahara M 2003 Geometry, Topology and Physics (Philadelphia:CRC Press)
[42] Fang C, Chen Y, Kee H Y and Fu L 2015 Phys. Rev. B 92 081201
[10] Hatcher A Vector Bundles and K-Theory (unpublished)
[43] Morimoto T and Furusaki A 2014 Phys. Rev. B 89 235127
[11] Hatcher A 2002 Algebraic Topology (Cambridge:Cambridge University Press)
[44] Zhao Y X and Lu Y 2017 Phys. Rev. Lett. 118 056401
[12] Shiozaki K, Sato M and Gomi K 2017 Phys. Rev. B 95 235425
[45] Song Z, Zhang T and Fang C 2018 Phys. Rev. X 8 031069
[13] Bzdušek T and Sigrist M 2017 Phys. Rev. B 96 155105
[46] Prasolov V V 2006 Elements of combinatorial and differential topology Vol. 74 (American Mathematical Soc.)
[14] Ahn J, Park S and Yang B J 2019 Phys. Rev. X 9 021013
[47] Chooquet-Bruhat Y 2000 Analysis, Manifolds, and Physics-Part II (Amsterdam:Elsevier)
[15] Po H C, Watanabe H and Vishwanath A 2018 Phys. Rev. Lett. 121 126402
[48] Yu R, Qi X L, Bernevig B A, Fang Z and Dai X 2011 Phys. Rev. B 84 075119
[16] Cano J, Bradlyn B, Wang Z, Elcoro L, Vergniory M G, Felser C, Aroyo M I and Bernevig B A 2018 Phys. Rev. Lett. 120 266401
[49] Alexandradinata A, Dai X and Bernevig B A 2014 Phys. Rev. B 89 155114
[50] Alexandradinata A, Wang Z and Bernevig B A 2016 Phys. Rev. X 6 021008
[17] Bouhon A, Black-Schaffer A M and Slager R J 2018 arXiv:1804.09719
[51] Soluyanov A A and Vanderbilt D 2012 Physical Review B 85 115415
[18] Wang Z, Wieder B J, Li J, Yan B and Bernevig B A 2019 Phys. Rev. Lett. 123 186401
[52] Nomura T, Habe T, Sakamoto R and Koshino M 2018 Physical Review Materials 2 054204
[19] Bradlyn B, Wang Z, Cano J and Bernevig B A 2019 Phys. Rev. B 99 045140
[53] Ramamurthy S T and Hughes T L 2015 Physical Review B 92 085105
[20] Song Z, Wang Z, Shi W, Li G, Fang C and Bernevig B A 2019 Phys. Rev. Lett. 123 036401
[54] Zhao Y X, Schnyder A P and Wang Z D 2016 Phys. Rev. Lett. 116 156402
[21] Po H C, Zou L, Senthil T and Vishwanath A 2019 Phys. Rev. B 99 195455
[22] Liu S, Vishwanath A and Khalaf E 2019 Phys. Rev. X 9 031003
[55] Wieder B J and Bernevig B A 2018 arXiv:1810.02373
[23] Ahn J and Yang B J 2019 Phys. Rev. B 99 235125
[56] Zhang F, Kane C L and Mele E J 2013 Phys. Rev. Lett. 110 046404
[24] Kirby R and Taylor L 1991 Pin structures on low-dimensional manifolds (London Mathematical Society Lecture Note Series Vol. 2) (Cambridge:Cambridge University Press)
[25] Su W, Schrieffer J and Heeger A J 1979 Physical review letters 42 1698
[57] Fang C and Fu L 2017 arXiv:1709.01929
[26] Serbyn M and Fu L 2014 Phys. Rev. B 90 035402
[58] Khalaf E 2018 Phys. Rev. B 97 205136
[27] Hsieh T H, Lin H, Liu J, Duan W, Bansil A and Fu L 2013 Nat. Commun. 4 1901
[59] Kooi S H, van Miert G and Ortix C 2018 Phys. Rev. B 98 245102
[28] Fang C, Gilbert M J, Xu S Y, Bernevig B A and Hasan M Z 2013 Phys. Rev. B 88 125141
[60] Varnava N and Vanderbilt D 2018 Phys. Rev. B 98 245117
[29] Young S M and Kane C L 2015 Phys. Rev. Lett. 115 126803
[61] van Miert G and Ortix C 2018 Phys. Rev. B 98 081110
[30] Wieder B and Kane C L 2016 Phys. Rev. B 94 155108
[62] Yue C, Xu Y, Song Z, Lu Y M, Weng H, Fang C and Dai X 2019 Nat. Phys. 15 577
[31] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[63] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T 2018 Sci. Adv. 4 eaat0346
[32] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[64] Ezawa M 2018 Phys. Rev. B 97 241402
[33] Kim J, Baik S S, Jung S W, Sohn Y, Ryu S H, Choi H J, Yang B J and Kim K S 2017 Phys. Rev. Lett. 119 226801
[65] Ezawa M 2018 Phys. Rev. B 97 155305
[34] Park S and Yang B J 2017 Phys. Rev. B 96 125127
[66] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[35] Chen Y, Xie Y, Yang S A, Pan H, Zhang F, Cohen M L and Zhang S 2015 Nano Lett. 15 6974
[67] Wang Z, Qi X L and Zhang S C 2010 New. J. Phys. 12 065007
[36] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108
[68] Wu Q, Soluyanov A A and bzdušek T 2019 Science 365 1273
[37] Xie L S, Schoop L M, Seibel E M, Gibson Q D, Xie W and Cava R J 2015 Apl Mater. 3 083602
[38] Chan Y H, Chiu C K, Chou M Y and Schnyder A P 2016 Phys. Rev. B 93 205132
[39] Kim Y, Wieder B J, Kane C L and Rappe A M 2015 Phys. Rev. Lett. 115 036806
[40] Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[41] Fang C, Weng H, Dai X and Fang Z 2016 Chin. Phys. B 25 117106
[42] Fang C, Chen Y, Kee H Y and Fu L 2015 Phys. Rev. B 92 081201
[43] Morimoto T and Furusaki A 2014 Phys. Rev. B 89 235127
[44] Zhao Y X and Lu Y 2017 Phys. Rev. Lett. 118 056401
[45] Song Z, Zhang T and Fang C 2018 Phys. Rev. X 8 031069
[46] Prasolov V V 2006 Elements of combinatorial and differential topology Vol. 74 (American Mathematical Soc.)
[47] Chooquet-Bruhat Y 2000 Analysis, Manifolds, and Physics-Part II (Amsterdam:Elsevier)
[48] Yu R, Qi X L, Bernevig B A, Fang Z and Dai X 2011 Phys. Rev. B 84 075119
[49] Alexandradinata A, Dai X and Bernevig B A 2014 Phys. Rev. B 89 155114
[50] Alexandradinata A, Wang Z and Bernevig B A 2016 Phys. Rev. X 6 021008
[51] Soluyanov A A and Vanderbilt D 2012 Physical Review B 85 115415
[52] Nomura T, Habe T, Sakamoto R and Koshino M 2018 Physical Review Materials 2 054204
[53] Ramamurthy S T and Hughes T L 2015 Physical Review B 92 085105
[54] Zhao Y X, Schnyder A P and Wang Z D 2016 Phys. Rev. Lett. 116 156402
[55] Wieder B J and Bernevig B A 2018 arXiv:1810.02373
[56] Zhang F, Kane C L and Mele E J 2013 Phys. Rev. Lett. 110 046404
[57] Fang C and Fu L 2017 arXiv:1709.01929
[58] Khalaf E 2018 Phys. Rev. B 97 205136
[59] Kooi S H, van Miert G and Ortix C 2018 Phys. Rev. B 98 245102
[60] Varnava N and Vanderbilt D 2018 Phys. Rev. B 98 245117
[61] van Miert G and Ortix C 2018 Phys. Rev. B 98 081110
[62] Yue C, Xu Y, Song Z, Lu Y M, Weng H, Fang C and Dai X 2019 Nat. Phys. 15 577
[63] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T 2018 Sci. Adv. 4 eaat0346
[64] Ezawa M 2018 Phys. Rev. B 97 241402
[65] Ezawa M 2018 Phys. Rev. B 97 155305
[66] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[67] Wang Z, Qi X L and Zhang S C 2010 New. J. Phys. 12 065007
[68] Wu Q, Soluyanov A A and bzdušek T 2019 Science 365 1273
[1] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[5] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[6] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[7] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[8] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[9] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[10] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[11] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[12] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[13] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[14] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[15] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
No Suggested Reading articles found!