Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 077303    DOI: 10.1088/1674-1056/21/7/077303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum spin Hall effect in a square-lattice model under a uniform magnetic field

Guo Huai-Ming(郭怀明)a)† and Feng Shi-Ping(冯世平) b)
a Department of Physics, Beihang University, Beijing 100191, China;
b Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  We study a toy square-lattice model under a uniform magnetic field. Using the Landauer--B黷tiker formula, we calculate the transport properties of the system on a two-terminal, a four-terminal, and a six-terminal device. We find that the quantum spin Hall (QSH) effect appears in energy ranges where the spin-up and spin-down subsystems have different filling factors. We also study the robustness of the resulting QSH effect and find that it is robust when the Fermi levels of both spin subsystems are far away from the energy plateaus but is fragile when the Fermi level of any spin subsystem is near the energy plateaus. These results provide an example of QSH effect with the physical origin other than time-reversal (TR) preserving spin-orbit coupling (SOC).
Keywords:  quantum spin Hall effect      topological insulator  
Received:  03 January 2012      Revised:  07 February 2012      Accepted manuscript online: 
PACS:  73.43.-f (Quantum Hall effects)  
  72.25.Hg (Electrical injection of spin polarized carriers)  
  73.20.-r (Electron states at surfaces and interfaces)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104189 and 11074023) and the National Basic Research Program of China (Grant Nos. 2011CBA00102, 2011CB921700, and 2012CB821403).
Corresponding Authors:  Guo Huai-Ming     E-mail:  hmguo@buaa.edu.cn

Cite this article: 

Guo Huai-Ming(郭怀明) and Feng Shi-Ping(冯世平) Quantum spin Hall effect in a square-lattice model under a uniform magnetic field 2012 Chin. Phys. B 21 077303

[1] Moore J E 2010 Nature 464 194
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[4] Qi X L and Zhang S C 2010 Phys. Today 63 33
[5] Wang Z M 2011 Acta Phys. Sin. 60 077203 (in chinese)
[6] Ma J,Luo H L and Wen S C 2011 Acta Phys. Sin. 60 094205 (in Chinese)
[7] Tan Z B, Ma L, Liu G T, L? L and Yang C L 2011 Acta Phys. Sin. 60 107204 (in Chinese)
[8] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[9] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. 78 195424
[10] Essin A M, Moore J E and Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
[11] Seradjeh B, Moore J E and Franz M 2009 Phys. Rev. Lett. 103 066402
[12] Kane C L andMele E J 2005 Phys. Rev. Lett. 95 226801
[13] Bernevig B A,Hughes T L and Zhang S C 2006 Science 314 1757
[14] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[15] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[16] Guo H M, Feng S P and Shen S Q 2011 Phys. Rev. 83 045114
[17] Sun Q F and Xie X C 2010 Phys. Rev. Lett. 104 066805
[18] Weeks C, Rosenberg G, Seradjeh B and Franz M 2007 Nature Phys. 3 796
[19] Rosenberg G, Seradjeh B, Weeks C and Franz M 2009 Phys. Rev. 79 205102
[20] Landauer R 1970 Phil. Mag. 21 863
[21] B黷tiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. 31 6207
[22] Datta S 1995 Electronic Transport in Mesoscopic Symtems (Cambridge: Cambridge University Press)
[23] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[24] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[25] Novoselov K S, McCann E, Morozov S V, Fal'ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nature Phys. 2 177
[26] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[3] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[4] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[5] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[6] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[7] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[8] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[9] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[10] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[11] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[12] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[13] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[14] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[15] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
No Suggested Reading articles found!