Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087502    DOI: 10.1088/1674-1056/28/8/087502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys

Zhe Chen(陈哲)1, Qian-Ke Zhu(朱乾科)1, Shu-Ling Zhang(张树玲)2, Ke-Wei Zhang(张克维)1, Yong Jiang(姜勇)1
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2 School of Material of Science and Engineering, North Minzu University, Yinchuan 750021, China
Abstract  Amorphous (Fe40Ni40B19Cu1)100-xNbx (x=1, 3, 5, 7) ribbons are prepared by using the melt-spinning method. We find that the glass forming ability (GFA) of the as-melt spun ribbons is significantly improved by adding Nb element. In addition, the thermal stability evaluated in steps of ΔT=Tx2-Tx1 effectively increases from 16 K to 75 K with Nb content increasing. The as-melt spun (Fe40Ni40B19Cu1)97Nb3 ribbon exhibits a lowest coercivity of 2 A/m and relatively large saturation magnetization of 103.7 A·m2/kg and thus it can be further treated by being annealed at 809 K. The crystallization behavior is confirmed to be determined by two individual crystallization processes corresponding to the precipitation of (Fe,Ni)23B6 phase and γ-(Fe,Ni) phase. With increasing annealing time, the single (Fe,Ni)23B6 phase can be transformed into a mixture of (Fe,Ni)23B6 and γ-(Fe,Ni) phase, and the grain size of γ-(Fe, Ni) phase increases from 5 nm to 80 nm while the grain size of (Fe,Ni)23B6 remains almost unchanged. Finally, we find that the grain growth in each of (Fe,Ni)23B6 and γ-(Fe, Ni) deteriorates the overall magnetic properties.
Keywords:  as-melt spun      glass forming ability      crystallization      coercivity  
Received:  27 March 2019      Revised:  22 May 2019      Accepted manuscript online: 
PACS:  75.50.Kj (Amorphous and quasicrystalline magnetic materials)  
  75.47.Np (Metals and alloys)  
  75.75.-c (Magnetic properties of nanostructures)  
  75.60.Nt (Magnetic annealing and temperature-hysteresis effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51731003), the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province, China (2014), the “131” Leading Talents Project of Higher Education Institutions in Shanxi Province, China (2015), the Overseas Students Science and Technology Activities Project Merit Funding, China (2016), and the Fund for Shanxi Key Subjects Construction.
Corresponding Authors:  Ke-Wei Zhang     E-mail:  drzkw@126.com

Cite this article: 

Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇) Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys 2019 Chin. Phys. B 28 087502

[1] Vlasak G, Svec P, Kuzminski M, Slawska-Waniewska A, Butvinova B, Butvina P and Hosko J 2011 J. Alloys Compd. 509 S64
[2] Milica M Vasić Vladimir A Blagojević Nebojša N and Begović 2015 Thermochim Acta 614 129
[3] Minić D G, Blagojević V A, Mihajlović L E, Cosović V R and Minic'D M 2011 Thermochim Acta 519 83
[4] Tavoosi M and Barahimi A 2017 Surfaces & Interfaces 8 103
[5] Gutiérrez J, Barandiarán J M, MíNguez P, Kaczkowski Z, Ruuskanen P, Vlasák G and Svec P andDuhaj P 2003 Sensor Actuat A-phys. 106 69
[6] Tsepelev V, Starodubtsev Y, Konashkov V and Belozerov V 2017 J. Alloys Compd. 707 210
[7] Kim C W, Cho K H and Suk H G 2014 Phys. Met. Metallogr. 115 1338
[8] Herzer G 1989 IEEE T Magn. 25 3327
[9] Suzki K and Cadogan J M 1998 Phys. Rev. B 58 2730
[10] Herzer G 1990 IEEE T Magn. 26 1397
[11] Long Z L, Chang C T, Ding Y H, Shao Y, Zhang P, Shen B L and Inoue A 2008 J. Non-Cryst. Solids 354 4609
[12] Inoue A and Shen B L 2002 Mater. T. Jim. 43 766
[13] Chang C T, Shen B L and Inoue A 2006 Appl. Phys. Lett. 88 011901
[14] Inoue A, Shen B L and Chang C T 2004 Acta Mater. 52 4093
[15] Kong F, Shen B, Makino A and Inoue A 2011 Thin Solid Films 519 8280
[16] Lu W, Fan J, Wang Y and Yan B 2010 J. Magn. Magn. Mater. 322 2935
[17] Yan Z J, Bian B R, Hu Y, Dang S E, Xia L T and Wang Y M 2010 J. Magn. Magn. Mater. 322 3359
[18] Wang H, Ng S M, Wong H F, Wong W C, Lam K K, Liu Y K, Fei L F, Zhou Y B, Mak C L, Wang Y and Leung C W 2018 Vacuum 152 239
[19] Galesic I, Reusch U, Angelkort C, Lewalter H, Berendes A, Schweda E and Kolbesen B O 2001 Vacuum 61 479
[20] Wu Y, Hui X D, Lu Z P, Liu Z Y, Liang L and Chen G L 2009 J. Alloys Compd. 467 187
[21] Poon S J, Shiflet G J, Guo F Q, Ponnambalam and V 2003 J. Non-Cryst. Solids. 317 1
[22] He K Y, Zhao Y H, Li G G, Cheng L Z, Wu B, Sui M L and Chen W Z 2007 J. Magn. Magn. Mater. 316 34
[23] Ling Z, Ma X H, Li Q, Zhang J J, Dong Y Q and Chang C T 2014 J. Alloys Compd. 608 79
[24] Wang A D, Zhang M G, Zhang J H, Men H, Shen B L, Pang S J and Zhang T 2012 J. Alloys Compd. 536 S354
[25] Hwang J Y, Lee H S and Yi S H 2018 Met. Mater.-Int. 25 p. 1
[26] Agudo P and Vazquez M 2005 J. Appl. Phys. 97 6044
[27] Elbaile L, Crespo R D, Pierna A R and García J A 2008 J. Non-Cryst. Solids 354 5143
[28] Švec, P, Turčanová J, Janičkovič D, Škorvánek I and Švec Sr P 2009 The 13th International Conference on Rapidly Quenched and Metastable Materials, 24-29 August, 2008 Dresden, Germany, 012092
[29] Glezer A M, Gorshenkov M V, Zhukov D G, Korchuganova O A, Aleev.A A, Torben Boll, Shurygina N A and Shchetinin I V 2015 Mater. Lett. 160 339
[30] Hernando A, Vázquez M, Kulik T and Prados C 1995 J. Phys-Condens Matter 51 3581
[31] Hernando A, Navarro I I and Gorría P 1995 J. Phys-Condens Matter 51 3281
[32] Saiseng S, Winotai P and Nilpairuch S 2004 J. Magn. Magn. Mater. 278 172
[33] Liu Y J and Chang I T H 2002 Mater. Sci. Eng. A 325 25
[34] Sui M L, Qian L H and He K Y 2000 Mater. Sci. Eng. A 286 201
[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
[3] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[4] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[5] Heredity of clusters in the rapidly cooling processes of Al-doped Zr50Cu50 melts and its correlation with the glass-forming ability
Dadong Wen(文大东), Yonghe Deng(邓永和), Ming Gao(高明), and Zean Tian(田泽安). Chin. Phys. B, 2021, 30(7): 076101.
[6] Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2
Qi-Qi Yang(杨棋棋), Zhuang Liu(刘壮), Chao-Yue Zhang(张超越), Hai-Chen Wu(吴海辰), Xiao-Lei Gao(高晓磊), Yi-Long Ma(马毅龙), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(7): 077504.
[7] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[8] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[9] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[10] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[11] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[12] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[13] Comparison of cavities and extended defects formed in helium-implanted 6H-SiC at room temperature and 750 ℃
Qing Liao(廖庆), Bingsheng Li(李炳生), Long Kang(康龙), Xiaogang Li(李小刚). Chin. Phys. B, 2020, 29(7): 076103.
[14] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[15] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
No Suggested Reading articles found!