Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 064101    DOI: 10.1088/1674-1056/28/6/064101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Axial magnetic field effect in numerical analysis of high power Cherenkov free electron laser

F Bazouband1, B Maraghechi2
1 Department of Physics, Fasa University, Post code 74616-86131, Fasa, Iran;
2 Department of Physics, Manhattanville College, Purchase, New York 10577, USA
Abstract  

Cherenkov free electron laser (CFEL) is simulated numerically by using the single particle method to optimize the electron beam. The electron beam is assumed to be moving near the surface of a flat dielectric slab along a growing radiation. The set of coupled nonlinear differential equations of motion is solved to study the electron dynamics. For three sets of parameters, in high power CFEL, it is found that an axial magnetic field is always necessary to keep the electron beam in the interaction region and its optimal strength is reported for each case. At the injection point, the electron beam's distance above the dielectric surface is kept at a minimum value so that the electrons neither hit the dielectric nor move away from it to the weaker radiation fields and out of the interaction region. The optimal electron beam radius and current are thereby calculated. This analysis is in agreement with two previous numerical studies for a cylindrical waveguide but is at odds with analytical treatments of a flat dielectric that does not use an axial magnetic field. This is backed by an interesting physical reasoning.

Keywords:  Cherenkov free electron laser      axial magnetic field      flat dielectric slab      electron beam  
Received:  27 October 2018      Revised:  24 February 2019      Accepted manuscript online: 
PACS:  41.60.Cr (Free-electron lasers)  
  52.59.Rz (Free-electron devices)  
  41.60.Bq (Cherenkov radiation)  
  41.85.Lc (Particle beam focusing and bending magnets, wiggler magnets, and quadrupoles)  
Corresponding Authors:  F Bazouband     E-mail:  fbazooband@gmail.com

Cite this article: 

F Bazouband, B Maraghechi Axial magnetic field effect in numerical analysis of high power Cherenkov free electron laser 2019 Chin. Phys. B 28 064101

[1] Perenzoni M and Paul D J 2014 Physics and Applications of Terahertz Radiation (Springer)
[2] Weide D V D 2003 Opt. Photon. News 14 48
[3] Ciocci F, Dattoli G, De Angelis A, et al. 1987 Nucl. Instrum. Methods Phys. Res. A 259 128
[4] Ciocci F, Doria A, Gallerano G P, Giabbai I, Kimmitt M F, Messina G, Renieri A and Walsh J E 1991 Phys. Rev. Lett. 66 699
[5] Garate E, Cook R, Heim P, Layman R and Walsh J 1985 J. Appl. Phys. 58 627
[6] Garate E, Shaughnessy C and Walsh J 1987 IEEE J. Quantum Electron. 23 1627
[7] Garate E P, Moustaizis S, Buzzi J M, Rouille C and Lamain H 1986 Appl. Phys. Lett. 48 1326
[8] Walsh J and Murphy J 1982 IEEE J. Quantum Electron. 18 1259
[9] Liu F, Xiao L, Ye Y, Wang M, Cui K, Feng X, Zhang W and Huang Y 2017 Nat. Photon. 11 289
[10] Asgekar V B and Dattoli G 2005 Opt. Commun. 255 309
[11] Ciocci F, Dattoli G, Doria A, Gallerano G P, Schettini G, Toree A E D, Auston D, Jacobs R, Bartolini R and Liao P 1987 in Conference on Lasers and Electro-Optics, Baltimore, Maryland, OSA, USA
[12] Gallerano G P, Doria A, Giovenale E and Renieri A 1999 Infrared Phys. Technol. 40 161
[13] Kalkal Y and Kumar V 2015 Phys. Rev. ST Accel. Beams 18 030707
[14] Wiggins S M, Jaroszynski D A, McNeil B W J, Robb G R M, Aitken P, Phelps A D R, Cross A W, Ronald K, Ginzburg N S, Shpak V G, Yalandin M I, Shunailov S A and Ulmaskulov M R 2000 Phys. Rev. Lett. 84 2393
[15] Fares H and Yamada M 2011 Phys. Plasmas 18 093106
[16] Gore B W and Asgekar V B 1996 Phys. Scr. 53 62
[17] Li D, Huo G, Imasaki K, Asakawa M and Tsunawaki Y 2010 Infrared Phys. Technol. 53 204
[18] Sharma G and Mishra G 2012 Nucl. Instrum. Methods Phys. Res. A 685 35
[19] Freund H P 1990 Phys. Rev. Lett. 65 2993
[20] Freund H P and Ganguly A K 1990 Phys. Fluids B 2 2506
[21] Li D, Wang Y, Hangyo M, Wei Y Z, Yang and Miyamoto S 2014 Appl. Phys. Lett. 104 194102
[22] Wang Y, Wei Y, Li D, Takano K, Nakajima M, Jiang X, Tang X, Shi X, Gong Y, Feng J and Miyamoto S 2015 Phys. Plasmas 22 083111
[23] Wang Y, Wei Y, Li D, Wanghe W, Xianbao S, Xia L, Qian L, Hairong Y, Jin X, Luqi Z, Chong D, Yubin G and Wenxiang W 2016 in IEEE International Vacuum Electronics Conference (IVEC)
[24] Kalkal Y and Kumar V 2016 Nucl. Instrum. Methods Phys. Res. A 827 85
[25] Fares H 2012 Nucl. Instrum. Methods Phys. Res. A 690 111
[26] Cao M M, Liu W X, Wang Y and Li K 2014 Acta Phys. Sin. 63 024101
[27] Cao M M, Liu W X, Wang Y and Li K 2016 Acta Phys. Sin. 65 014101
[28] Ye Y, Liu F, Cui K, Feng X, Zhang W and Huang Y 2018 Opt. Express 26 31402
[29] Li M, Yang X F, Xu Z, et al. 2018 Acta Phys. Sin. 67 084102
[30] Lin X L, Zhang J B, Lu Y, Luo F, Lu S L, Yu T M and Dai Z M 2010 Chin. Phys. Lett. 27 044101
[31] Li W, Jiang S, He Z, Jia Q, Wang L and He D D 2018 in 9th International Particle Accelerator Conference, Canada, JACoW
[32] Owens I J and Brownell J H 2005 J. Appl. Phys 97 104915
[33] Weatherall J C and Main W 1992 Phys. Fluids B 4 1953
[34] Main W T, Garate E, Weatherall J C and Cherry R 1992 IEEE T. Plasma Sci. 20 281
[35] Asgekar V B and Dattoli G 2002 Opt. Commun. 206 373
[36] Fares H, Yamada M and Kuwamura Y 2010 Jpn. J. Appl. Phys. 49 096402
[37] de la Fuente I, van der Slot P J M and Boller K J 2007 Phys. Rev. ST Accel. Beams 10 020702
[38] Fares H 2012 Phys. Plasmas 19 053109
[39] Kalkal Y and Kumar V 2016 Phys. Rev. Accel. Beams 19 060702
[40] Yatsenko T, Ilyenko K and Sotnikov G V 2012 Phys. Plasmas 19 063107
[41] Hill N, Vaughan W, Price A H and Davies M 1969 Dielectric Properties and Molecular behaviour (London: Van Nostrand Reinhold)
[42] Freund H P and Antonsen T M 1992 Principles of free-electron laser (London: Chapman-Hall), Chap. 2
[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[3] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[4] Fe-doped ZnS film fabricated by electron beam evaporation and its application as saturable absorber for Er:ZBLAN fiber laser
Jiu-Lin Yang(杨久林), Guo-Ying Feng(冯国英), Du-Xin Qing(卿杜鑫), Ya-Jie Wu(吴雅婕), Yun Luo(罗韵), and Jian-Jun Wang(王建军). Chin. Phys. B, 2021, 30(7): 074207.
[5] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[6] Influences of annealing temperature on properties of Fe2+: ZnSe thin films deposited by electron beam evaporation and their applications to Q-switched fiber laser
Du-Xin Qing(卿杜鑫), Shu-Tong Wang(王树同), Shou-Gui Ning(宁守贵), Wei Zhang(张伟), Xiao-Xu Chen(陈晓旭), Hong Zhang(张弘), Guo-Ying Feng(冯国英), Shou-Huan Zhou(周寿桓). Chin. Phys. B, 2020, 29(5): 054208.
[7] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[8] Electron beam irradiation on novel coronavirus (COVID-19): A Monte-Carlo simulation
Guobao Feng(封国宝), Lu Liu(刘璐), Wanzhao Cui(崔万照), Fang Wang(王芳). Chin. Phys. B, 2020, 29(4): 048703.
[9] Modulation of absorption manner in helicon discharges by changing profile of low axial magnetic field
Gao Zhao(赵高), Yu Wang(王宇), Chen Niu(牛晨), Zhong-Wei Liu(刘忠伟), Jiting Ouyang(欧阳吉庭), Qiang Chen(陈强). Chin. Phys. B, 2017, 26(10): 105201.
[10] Tunable terahertz radiation from arbitrary profile dielectric grating coated with graphene excited by an electron beam
Zhao Tao (赵陶), Zhong Ren-Bin (钟任斌), Hu Min (胡旻), Chen Xiao-Xing (陈晓行), Zhang Ping (张平), Gong Sen (龚森), Liu Sheng-Gang (刘盛纲). Chin. Phys. B, 2015, 24(9): 094102.
[11] Design and fabrication of structural color by local surface plasmonic meta-molecules
Ma Ya-Qi (马亚琪), Shao Jin-Hai (邵金海), Zhang Ya-Feng (张亚峰), Lu Bing-Rui (陆冰睿), Zhang Si-Chao (张思超), Sun Yan (孙艳), Qu Xin-Ping (屈新萍), Chen Yi-Fang (陈宜方). Chin. Phys. B, 2015, 24(8): 080702.
[12] Coherent and tunable radiation with power enhancement from surface plasmon polaritons
Gong Sen (龚森), Zhong Ren-Bin (钟任斌), Hu Min (胡旻), Chen Xiao-Xing (陈晓行), Zhang Ping (张平), Zhao Tao (赵陶), Liu Sheng-Gang (刘盛纲). Chin. Phys. B, 2015, 24(7): 077302.
[13] Preparation and characterization of PTFE coating in new polymer quartz piezoelectric crystal sensor for testing liquor products
Gu Yu (谷宇), Li Qiang (李强). Chin. Phys. B, 2015, 24(7): 078106.
[14] Electrical properties of zinc-oxide-based thin-film transistors using strontium-oxide-doped semiconductors
Wu Shao-Hang (吴绍航), Zhang Nan (张楠), Hu Yong-Sheng (胡永生), Chen Hong (陈红), Jiang Da-Peng (蒋大鹏), Liu Xing-Yuan (刘星元). Chin. Phys. B, 2015, 24(10): 108504.
[15] Electron beam evaporation deposition of cadmium sulphide and cadmium telluride thin films:Solar cell applications
Fang Li (方力), Chen Jing (陈婧), Xu Ling (徐岭), Su Wei-Ning (苏为宁), Yu Yao (于瑶), Xu Jun (徐骏), Ma Zhong-Yuan (马忠元). Chin. Phys. B, 2013, 22(9): 098802.
No Suggested Reading articles found!