|
|
Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction |
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃) |
Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract Non-adiabatic dynamical calculations are carried out for the Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction on the diabatic potential energy surfaces of Wang et al. (Sci. Rep. 2018, 8, 17960) by using the time-dependent wave packet method. The state-to-state integral cross sections and differential cross sections of two reaction channels (NaH/NaD+D/H) are calculated for collision energy up to 0.4 eV. The cross section branching ratio indicates that the dominant reaction channel changes from NaD+H to NaH+D when the collision energy is larger than 0.227 eV. The products from two reaction channels both prefer to form in vibrationally cold but rotationally hot states, and they both tend to forward scattering.
|
Received: 21 March 2019
Revised: 03 April 2019
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774043). |
Corresponding Authors:
Mao-Du Chen
E-mail: mdchen@dlut.edu.cn
|
Cite this article:
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃) Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction 2019 Chin. Phys. B 28 063401
|
[1] |
Bililign S and Kleiber P D 1992 J. Chem. Phys. 96 213
|
[2] |
Bililign S, Kleiber P D, Kearney W R and Sando K M 1992 J. Chem. Phys. 96 218
|
[3] |
Chang H C, Luo Y L and Lin K C 1991 J. Chem. Phys. 94 3529
|
[4] |
Chang Y P, Hsiao M K, Liu D K and Lin K C 2008 J. Chem. Phys. 128 234309
|
[5] |
Crepin C, Picque J L, Rahmat G, Verges J, Vetter R, Gadea F X, Pelissier M, Spiegelmann F and Malrieu J P 1984 Chem. Phys. Lett. 110 395
|
[6] |
Cuvellier J, Petitjean L, Mestdagh J M, Paillard D, Depujo P and Berlande J 1986 J. Chem. Phys. 84 1451
|
[7] |
Fan L H, Chen J J, Lin Y Y and Luh W T 1999 J. Phys. Chem. A 103 1300
|
[8] |
Gadea F X, Spiegelmann F, Pelissier M and Malrieu J P 1986 J. Chem. Phys. 84 4872
|
[9] |
He D, Yuan J C and Chen M D 2017 Sci. Rep. 7 3084
|
[10] |
He D, Yuan J C, Li H X and Chen M D 2016 Sci. Rep. 6 25083
|
[11] |
Huang X, Zhao J Z, Xing G Q, Wang X B and Bersohn R 1996 J. Chem. Phys. 104 1338
|
[12] |
Lin K C and Chang H C 1989 J. Chem. Phys. 90 6151
|
[13] |
Lin K C and Vetter R 2002 Int. Rev. Phys. Chem. 21 357
|
[14] |
Liu D K and Lin K C 1996 J. Chem. Phys. 105 9121
|
[15] |
Motzkus M, Pichler G, Kompa K L and Hering P 1998 J. Chem. Phys. 108 9291
|
[16] |
Wang S F, Yang Z J, Yuan J C and Chen M D 2018 Sci. Rep. 8 17960
|
[17] |
Motzkus M, Pichler G, Kompa K L and Hering P 1997 J. Chem. Phys. 106 9057
|
[18] |
Halvick P and Truhlar D G 1992 J. Chem. Phys. 96 2895
|
[19] |
Pichler G, Motzkus M, Cunha S L, Correia R R B, Kompa K L and Hering P 1992 Nuovo Cimento D 14 1065
|
[20] |
Hack M D and Truhlar D G 1999 J. Chem. Phys. 110 4315
|
[21] |
BenNun M, Martinez T J and Levine R D 1997 Chem. Phys. Lett. 270 319
|
[22] |
Tawa G J, Mielke S L, Truhlar D G and Schwenke D W 1994 J. Chem. Phys. 100 5751
|
[23] |
Blais N C and Truhlar D G 1983 J. Chem. Phys. 79 1334
|
[24] |
Blais N C, Truhlar D G and Garrett B C 1983 J. Chem. Phys. 78 2956
|
[25] |
Qiang W 2015 Chin. Phys. Lett. 32 013101
|
[26] |
Tan R S, Liu X G and Hu M 2012 Chin. Phys. Lett. 29 123101
|
[27] |
Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
|
[28] |
Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[29] |
Zhao J, Wu H, Sun H B and Wang L F 2018 Chin. Phys. B 27 023102
|
[30] |
Yang T G, Huang L, Wang T, Xiao C L, Xie Y R, Sun Z G, Dai D X, Chen M D, Zhang D H and Yang X M 2015 J. Phys. Chem. A 119 12284
|
[31] |
Yuan J C, He D and Chen M D 2015 Phys. Chem. Chem. Phys. 17 11732
|
[32] |
Yuan J C, He D, Wang S F, Chen M D and Han K L 2018 Phys. Chem. Chem. Phys. 20 6638
|
[33] |
Zhao B, Sun Z G and Guo H 2016 J. Chem. Phys. 145 134308
|
[34] |
Zhao B, Sun Z G and Guo H 2016 J. Chem. Phys. 144 214303
|
[35] |
Zhao B, Sun Z G and Guo H 2016 J. Chem. Phys. 145 184106
|
[36] |
Zhao B, Sun Z G and Guo H 2016 J. Chem. Phys. 144 064104
|
[37] |
Zhao B, Sun Z G and Guo H 2018 Phys. Chem. Chem. Phys. 20 191
|
[38] |
Fleck J A, Morris J R and Feit M D 1976 Appl. Phys. 10 129
|
[39] |
Sun Z G, Guo H and Zhang D H 2010 J. Chem. Phys. 132 084112
|
[40] |
Sun Z G, Lee S Y, Guo H and Zhang D H 2009 J. Chem. Phys. 131 049906
|
[41] |
Sun Z G, Lin X, Lee S Y and Zhang D H 2009 J. Phys. Chem. A 113 4145
|
[42] |
Zhang P Y and Han K L 2013 J. Phys. Chem. A 117 8512
|
[43] |
Yuan J C, Cheng D H and Chen M D 2014 RSC Adv. 4 36189
|
[44] |
Yuan D F, Yu S R, Chen W T, Sang J W, Luo C, Wang T, Xu X, Casavecchia P, Wang X A, Sun Z G, Zhang D H and Yang X M 2018 Nat. Chem. 10 653
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|