Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 038901    DOI: 10.1088/1674-1056/28/3/038901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Exploring evolutionary features of directed weighted hazard network in the subway construction

Gong-Yu Hou(侯公羽)1,2, Cong Jin(靳聪)1, Zhe-Dong Xu(许哲东)1, Ping Yu(于萍)1, Yi-Yi Cao(曹怡怡)1
1 School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China;
2 School of Mining Engineering and Geology, Xinjiang Institute of Engineering, Urumqi 830091, China
Abstract  

A better understanding of previous accidents is an effective way to reduce the occurrence of similar accidents in the future. In this paper, a complex network approach is adopted to construct a directed weighted hazard network (DWHN) to analyze topological features and evolution of accidents in the subway construction. The nodes are hazards and accidents, the edges are multiple relationships of these nodes and the weight of edges are occurrence times of repetitive relationships. The results indicate that the DWHN possesses the property of small-world with small average path length and large clustering coefficient, indicating that hazards have better connectivity and will spread widely and quickly in the network. Moreover, the DWHN has the property of scale-free network for the cumulative degree distribution follows a power-law distribution. It makes DWHN more vulnerable to target attacks. Controlling key nodes with higher degree, strength and betweenness centrality will destroy the connectivity of DWHN and mitigate the spreading of accidents in the network. This study is helpful for discovering inner relationships and evolutionary features of hazards and accidents in the subway construction.

Keywords:  accident analysis      directed weighted network      complex network      evolutionary features  
Received:  08 December 2018      Revised:  01 January 2019      Accepted manuscript online: 
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.40.-a (Transportation)  
  89.20.Kk (Engineering)  
Fund: 

Project supported by the Co-Funding of National Natural Science Foundation of China and Shenhua Group Corporation Ltd (Grant No. U1261212) and the Program of Major Achievements Transformation and Industrialization of Beijing Education Commission, China (Grant No. ZDZH20141141301).

Corresponding Authors:  Cong Jin     E-mail:  tbp1600602049@student.cumtb.edu.cn

Cite this article: 

Gong-Yu Hou(侯公羽), Cong Jin(靳聪), Zhe-Dong Xu(许哲东), Ping Yu(于萍), Yi-Yi Cao(曹怡怡) Exploring evolutionary features of directed weighted hazard network in the subway construction 2019 Chin. Phys. B 28 038901

[1] Younes M B and Boukerche A 2015 Ad. Hoc. Netw. 24 317
[2] Kong X J, Xu Z Z, Shen G J, Wang J Z, Yang Q Y and Zhang B S 2016 Future Gener. Comp. Sy. 61 97
[3] Li Q M, Song L L, List G F, Deng Y L, Zhou Z P and Liu P 2017 Saf. Sci. 93 50
[4] Zhang X L, Deng Y L, Li Q M, Skitmore M and Zhou Z P 2016 Saf. Sci. 84 88
[5] Ding L Y, Yu H L, Li H, Zhou C, Wu X G and Yu M H 2012 Automat. Constr. 27 120
[6] Ding L Y, Zhang L M, Wu X G, Skibniewski M J and Yu Q Z 2014 Saf. Sci. 62 8
[7] Hangzhou Government 2010 1994 Interfaces 24 19
[8] Saaty T L 1994 Interfaces 24 19
[9] Vaidyaab O S 2006 Eur. J. Oper. Res. 169 1
[10] Li X P and Li Y N 2014 Tunn. Undergr. Sp. Tech. 40 182
[11] Tseng C H, Cheng S T, Wang Y H and Peng J T 2008 Phys. A 387 3192
[12] Hou G Y, Liang R, Sun L, Liu L and Gong Y F 2014 Acta Phys. Sin. 63 090505 (in Chinese)
[13] Boubou R, Emeriault F and Kastner R 2010 Can. Geotech. J. 47 1214
[14] Zhang Y and Wang X Y 2012 Chin. Phys. B 21 020507
[15] Jiang A N, Wang S Y and Tang S L 2011 Automat. Constr. 20 482
[16] Widodo A and Yang B S 2007 Mech. Syst. Signal Pr. 21 2560
[17] Salmon P M, Cornelissen M and Trotter M J 2012 Saf. Sci. 50 1158
[18] Branford K 2011 Aviation Psychol. Appl. Hum. Factors 1 31
[19] Salmon P M, Goode N, Archer F, Spencer C, Mcardle D and Mcclure R J 2014 Saf. Sci. 70 114
[20] Ouyang M, Hong L, Yu M H and Fei Q 2010 Saf. Sci. 48 544
[21] Eleye-Datubo A G, Wall A and Wang J 2008 Risk Anal. 28 95
[22] Zhang L M, Wu X G, Qin Y W, Skibniewski M J and Liu W L 2016 Risk Anal. 36 278
[23] Diller T, Helmrich G, Dunning S, Cox S, Buchanan A and Shappell S 2014 Am. J. Med. Qual. 29 181
[24] Shi L, Shuai J and Xu K 2014 J. Hazard. Mater. 278 529
[25] Lavasani S M, Zendegani A and Celik M 2015 Process Saf. Environ. 93 75
[26] Zhou T, Bai W J, Wang B H, Liu Z J and Yang G 2005 Physics 34 31 (in Chinese)
[27] Yao H, Zhang J W and Di Z R 2010 Physics 39 190 (in Chinese)
[28] Alexei V, Romualdo P S and Alessandro V 2002 Phys. Rev. E 65 066130
[29] Bawden D 2004 Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge: Cambridge Univeristy Press) pp. 449-452
[30] Wagner A 2001 Mol. Biol. Evol. 18 1283
[31] Romualdo P S, Eric S and Solé R V 2003 J. Theor. Biol. 222 199
[32] Zheng Z G and Qian Y 2018 Chin. Phys. B 27 018901
[33] Latora V and Marchiori M 2002 Physica A 314 109
[34] Cai K Q, Zhang J, Du W B and Cao X B 2012 Chin. Phys. B 21 028903
[35] Jiang J, Zhang R, Guo L, Li W and Cai X 2016 Chin. Phys. Lett. 33 108901
[36] Niu R W and Pan G J 2016 Chin. Phys. Lett. 33 068901
[37] Xing X, Yu D X, Tian X J and Wang S G 2017 Acta Phys. Sin. 66 230501 (in Chinese)
[38] Albert R, Jeong H and Barabási A L 1999 Nature 401 130
[39] Barabási A L, Albert R and Jeong H 2000 Physica A 281 69
[40] Li H J, An H Z, Huang J C, Gao X Y and Shi Y L 2014 Acta Phys. Sin. 63 048901 (in Chinese)
[41] Liao H, Shen J, Wu X T, Chen B K and Zhou M Y 2017 Chin. Phys. B 26 110505
[42] Gao X Y, An H Z and Fang W 2012 Acta Phys. Sin. 61 098902 (in Chinese)
[43] Gao X Y, An H Z, Liu H H and Ding Y H 2011 Acta Phys. Sin. 60 068902 (in Chinese)
[44] Luo Z Y, Li K P, Ma X and Zhou J 2014 Proceedings of the 2013 International Conference on Electrical and Information Technologies for Rail Transportation, November 7-10, 2013 Changchun, China, p. 513
[45] Zhou Z P and Irizarry J 2016 J. Manage. Eng. 32 05016013
[46] Zhou Z P, Irizarry J and Li Q M 2014 Saf. Sci. 64 127
[47] Gao Z K and Jin N D 2012 Nonlinear Anal. 13 947
[48] Zeng X, Chen J P, Shao J L and Bie L D 2012 Acta Phys. Sin. 61 190510 (in Chinese)
[49] Zeng M, Wang E H, Zhao M Y and Meng Q H 2017 Acta Phys. Sin. 66 210502 (in Chinese)
[50] Barthélemy M, Barrat A, Pastor-Satorras R and Vespignani A 2005 Physica A 346 34
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[7] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[15] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
No Suggested Reading articles found!