Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 034204    DOI: 10.1088/1674-1056/28/3/034204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface

Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇)
Air Force Engineering University, Xi'an 710077, China
Abstract  

A systematic study of the aperture efficiency and mode constituent for orbital angular momentum (OAM) vortex beam generated by digital metasurface is presented. The aperture efficiency and OAM spectrum are computed for different bit numbers. It is found that the aperture efficiency declines for digital metasurface due to the phase quantization error, especially for 1-bit device. Fortunately, the OAM spectrum is barely affected by phase quantization and the designated main mode keeps dominant for different bit numbers, indicating that high purity OAM vortex beam can be generated by digital metasurface. Besides, the influence of topological charge l is also investigated. For a fixed metasurface, the radiation performance deteriorates sharply with the growing of l and the parasitic OAM mode becomes dominant at certain angle. At last, a prototype of 1-bit metasurface was simulated, fabricated and measured in anechoic chamber. The simulation and experiment results verify the correctness of the numerical analysis.

Keywords:  orbital angular momentum (OAM)      efficiency      mode constituent      metasurface  
Received:  19 November 2018      Revised:  22 December 2018      Accepted manuscript online: 
PACS:  42.50.Tx (Optical angular momentum and its quantum aspects)  
  42.79.Ag (Apertures, collimators)  
Corresponding Authors:  Xiangyu Cao     E-mail:  xiangyucaokdy@163.com

Cite this article: 

Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇) Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface 2019 Chin. Phys. B 28 034204

[1] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[2] Pu J X and Chen Z Y 2009 Chin. Phys. Lett. 26 034202
[3] Zhao S M, Ding J, Dong X L and Zheng B Y 2011 Chin. Phys. Lett. 28 124207
[4] Guo Z G and Yang G M 2017 IEEE Antennas Wireless Propag. Lett. 16 404
[5] Cui X Z, Yin X L, Chang Huan, Zhang Z C, Wang Y J and Wu G H 2017 Chin. Phys. B 26 114207
[6] Ji Z Y and Zhou G Q 2017 Chin. Phys. B 26 094202
[7] Shen Y Z, Yang J W, Meng H F, Dou W B and Hu S M 2018 Appl. Phys. Lett. 112 141901
[8] Thidé B, Then H, SjoHolm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H and Khamitova R 2007 Phys. Rev. Lett. 99 087701
[9] Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A and Romanato F 2012 New J. Phys. 14 033001
[10] Zhang C and Chen D 2017 IEEE Antennas Wireless Propag. Lett. 16 2316
[11] Lin M, Gao Y, Liu P and Liu J 2016 Electron. Lett. 52 1168
[12] Wei W L, Mahdjoubi K, Brousseau C and Emile O 2016 IET Microw. Antennas Propag. 10 1420
[13] Mahmouli F E and Walker S D 2013 IEEE Antennas Wireless Propag. Lett. 2 223
[14] Zhang Z F, Zheng S L, Jin X F, Chi H and Zhang X M 2016 IEEE Antennas Wireless Propag. Lett. 16 8
[15] Yu S, Li L, Shi G, Zhu C, Zhou X and Shi Y 2016 Appl. Phys. Lett. 108 121903
[16] Yu S, Li L, Shi G, Zhu C and Shi Y 2016 Appl. Phys. Lett. 108 241901
[17] Yu S, Li L and Shi G 2016 Appl. Phys. Express 9 082202
[18] Chen M L N, Jiang L J and Sha W E I 2018 IEEE Antennas Wireless Propag. Lett. 17 110
[19] Zhang K, Yuan Y Y, Zhang D W, Ding X M, Ratni B, Burokur S N, Lu M J, Tang K and Wu Q 2018 Opt. Express 26 1351
[20] Byun W J, Choi H D and Cho Y H 2017 Sci. Rep. 7 12805
[21] Xu B J, Wu C, Wei Z Y, Fan Y C and Li H Q 2016 Opt. Mater. Express 6 3940
[22] Giovampaola C D and Engheta N 2014 Nat. Mater. 13 1115
[23] Yang H H, Yang F, Xu S H, Li M K, Cao X Y, Gao J and Zheng Y J 2017 IEEE Antennas Wireless Propag. Lett. 16 302
[24] Zhao Y, Cao X Y, Gao J, Liu X and Li S J 2016 Opt. Express 24 11208
[25] Yang H H, Yang F, Cao X Y, Xu S H, Gao J, Chen X B, Li M K and Li T 2017 IEEE Trans. Antennas Propag. 65 3024
[26] Zhang D, Cao X Y, Yang H H, Gao J and Zhu X W 2018 Opt. Express 26 24804
[27] Nayeri P, Yang F and Elsherbeni A Z 2013 IEEE Antennas Propag. Magaine 55 127
[28] Meng X S, Wu J J, Wu Z S, Qu T and Yang L 2018 Opt. Express 26 23185
[29] Lei X Y and Cheng Y J 2017 IEEE Antennas Wireless Propag. Lett. 16 1357
[30] Jiang S, Chen C, Zhang H L and Chen W D 2018 Opt. Express 26 6466
[31] Zhang D, Cao X Y, Yang H H and Gao J 2018 IEEE Access 6 28691
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[6] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[7] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[8] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[9] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[10] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[11] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[12] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[13] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[14] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[15] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
No Suggested Reading articles found!