ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface |
Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇) |
Air Force Engineering University, Xi'an 710077, China |
|
|
Abstract A systematic study of the aperture efficiency and mode constituent for orbital angular momentum (OAM) vortex beam generated by digital metasurface is presented. The aperture efficiency and OAM spectrum are computed for different bit numbers. It is found that the aperture efficiency declines for digital metasurface due to the phase quantization error, especially for 1-bit device. Fortunately, the OAM spectrum is barely affected by phase quantization and the designated main mode keeps dominant for different bit numbers, indicating that high purity OAM vortex beam can be generated by digital metasurface. Besides, the influence of topological charge l is also investigated. For a fixed metasurface, the radiation performance deteriorates sharply with the growing of l and the parasitic OAM mode becomes dominant at certain angle. At last, a prototype of 1-bit metasurface was simulated, fabricated and measured in anechoic chamber. The simulation and experiment results verify the correctness of the numerical analysis.
|
Received: 19 November 2018
Revised: 22 December 2018
Accepted manuscript online:
|
PACS:
|
42.50.Tx
|
(Optical angular momentum and its quantum aspects)
|
|
42.79.Ag
|
(Apertures, collimators)
|
|
Corresponding Authors:
Xiangyu Cao
E-mail: xiangyucaokdy@163.com
|
Cite this article:
Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇) Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface 2019 Chin. Phys. B 28 034204
|
[1] |
Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
|
[2] |
Pu J X and Chen Z Y 2009 Chin. Phys. Lett. 26 034202
|
[3] |
Zhao S M, Ding J, Dong X L and Zheng B Y 2011 Chin. Phys. Lett. 28 124207
|
[4] |
Guo Z G and Yang G M 2017 IEEE Antennas Wireless Propag. Lett. 16 404
|
[5] |
Cui X Z, Yin X L, Chang Huan, Zhang Z C, Wang Y J and Wu G H 2017 Chin. Phys. B 26 114207
|
[6] |
Ji Z Y and Zhou G Q 2017 Chin. Phys. B 26 094202
|
[7] |
Shen Y Z, Yang J W, Meng H F, Dou W B and Hu S M 2018 Appl. Phys. Lett. 112 141901
|
[8] |
Thidé B, Then H, SjoHolm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H and Khamitova R 2007 Phys. Rev. Lett. 99 087701
|
[9] |
Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A and Romanato F 2012 New J. Phys. 14 033001
|
[10] |
Zhang C and Chen D 2017 IEEE Antennas Wireless Propag. Lett. 16 2316
|
[11] |
Lin M, Gao Y, Liu P and Liu J 2016 Electron. Lett. 52 1168
|
[12] |
Wei W L, Mahdjoubi K, Brousseau C and Emile O 2016 IET Microw. Antennas Propag. 10 1420
|
[13] |
Mahmouli F E and Walker S D 2013 IEEE Antennas Wireless Propag. Lett. 2 223
|
[14] |
Zhang Z F, Zheng S L, Jin X F, Chi H and Zhang X M 2016 IEEE Antennas Wireless Propag. Lett. 16 8
|
[15] |
Yu S, Li L, Shi G, Zhu C, Zhou X and Shi Y 2016 Appl. Phys. Lett. 108 121903
|
[16] |
Yu S, Li L, Shi G, Zhu C and Shi Y 2016 Appl. Phys. Lett. 108 241901
|
[17] |
Yu S, Li L and Shi G 2016 Appl. Phys. Express 9 082202
|
[18] |
Chen M L N, Jiang L J and Sha W E I 2018 IEEE Antennas Wireless Propag. Lett. 17 110
|
[19] |
Zhang K, Yuan Y Y, Zhang D W, Ding X M, Ratni B, Burokur S N, Lu M J, Tang K and Wu Q 2018 Opt. Express 26 1351
|
[20] |
Byun W J, Choi H D and Cho Y H 2017 Sci. Rep. 7 12805
|
[21] |
Xu B J, Wu C, Wei Z Y, Fan Y C and Li H Q 2016 Opt. Mater. Express 6 3940
|
[22] |
Giovampaola C D and Engheta N 2014 Nat. Mater. 13 1115
|
[23] |
Yang H H, Yang F, Xu S H, Li M K, Cao X Y, Gao J and Zheng Y J 2017 IEEE Antennas Wireless Propag. Lett. 16 302
|
[24] |
Zhao Y, Cao X Y, Gao J, Liu X and Li S J 2016 Opt. Express 24 11208
|
[25] |
Yang H H, Yang F, Cao X Y, Xu S H, Gao J, Chen X B, Li M K and Li T 2017 IEEE Trans. Antennas Propag. 65 3024
|
[26] |
Zhang D, Cao X Y, Yang H H, Gao J and Zhu X W 2018 Opt. Express 26 24804
|
[27] |
Nayeri P, Yang F and Elsherbeni A Z 2013 IEEE Antennas Propag. Magaine 55 127
|
[28] |
Meng X S, Wu J J, Wu Z S, Qu T and Yang L 2018 Opt. Express 26 23185
|
[29] |
Lei X Y and Cheng Y J 2017 IEEE Antennas Wireless Propag. Lett. 16 1357
|
[30] |
Jiang S, Chen C, Zhang H L and Chen W D 2018 Opt. Express 26 6466
|
[31] |
Zhang D, Cao X Y, Yang H H and Gao J 2018 IEEE Access 6 28691
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|