Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024301    DOI: 10.1088/1674-1056/28/2/024301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials

Ying Liu(刘颖)1, Yi-Feng Li(李义丰)1,2, Xiao-Zhou Liu(刘晓宙)3
1 College of Computer Science and Technology, Nanjing Tech University, Nanjing 211800, China;
2 Key Laboratory of Modern Acoustics, Ministry of Education, Nanjing University, Nanjing 210093, China;
3 Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics and School of Physics, Nanjing University, Nanjing 210093, China
Abstract  An underwater acoustic metasurface with sub-wavelength thickness is designed for acoustic wavefront manipulation. In this paper, a pentamode lattice and a frequency-independent generalized acoustic Snell's law are introduced to overcome the limitations of narrow bandwidth and low transmittance. The bulk modulus and effective density of each unit cell can be tuned simultaneously, which are modulated to guarantee the achievement of refractive index profile and high transmission. Here, we actualize anomalous refraction, generation of non-diffracting Bessel beam, sub-wavelength flat focusing, and surface wave conversion by constructing inhomogeneous acoustic metasurface. This design approach has potential applications in medical ultrasound imaging and underwater acoustic communications.
Keywords:  metasurface      frequency-independent      pentamode      high transmission  
Received:  12 October 2018      Revised:  26 November 2018      Accepted manuscript online: 
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.20.+g (General linear acoustics)  
  68.60.Bs (Mechanical and acoustical properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61571222 and 11474160), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161009), and the Six-Talent Peaks Project of Jiangsu Province, China.
Corresponding Authors:  Yi-Feng Li     E-mail:  lyffz4637@163.com

Cite this article: 

Ying Liu(刘颖), Yi-Feng Li(李义丰), Xiao-Zhou Liu(刘晓宙) Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials 2019 Chin. Phys. B 28 024301

[1] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[2] Ni X, Emani N K, Kildishev A V, Boltasseva A and Shalaev V M 2012 Science 335 427
[3] Sun S, He Q, Xiao S, Xu Q, Li X and Zhou L 2012 Nat. Mater. 11 426
[4] Boltasseva A, Kildishev A V and Shalaev V M 2013 Science 339 1232009
[5] Lin J, Mueller J P B, Wang Q, Yuan G, Antoniou N, Yuan X C and Capasso F 2013 Science 340 331
[6] Kuester E F, Mohamed M A, Piket-May M and Holloway C L 2003 IEEE Trans. Anten. Propag. 51 2641
[7] Li Y 2017 Physics 46 721 (in Chinese)
[8] Ahmadi A, Ghadarghadr S and Mosallaei H 2010 Opt. Express 18 123
[9] Memarzadeh B and Mosallaei H 2011 Opt. Lett. 36 2569
[10] Tian Y, Wei Q, Cheng Y, Xu Z and Liu X 2015 Appl. Phys. Lett. 107 333
[11] Díaz-Rubio A and Tretyakov S A 2017 Phys. Rev. B 96 125409
[12] Zhu H and Semperlotti F 2016 Phys. Rev. Lett. 117 034302
[13] Sun H X, Xin F, Yong G, Ren X D and Yuan S Q 2017 Acta. Phys. Sin. 66 244301 (in Chinese)
[14] Su X, Norris A N, Cushing C W, Haberman M R and Wilson P S 2017 J. Acoust. Soc. Am. 141 4408
[15] Li X C and Liu Z Y 2005 Phys. Lett. A 338 413
[16] Khelif A, Choujaa A, Benchabane S, Djafarirouhani B and Laude V 2004 Appl. Phys. Lett. 84 4400
[17] Sun Z, Jia H, Chen Y, Wang Z and Yang J 2018 J. Acoust. Soc. Am. 143 1029
[18] Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z and Capasso F 2012 Nano Lett. 12 4932
[19] Liang Z and Li J 2012 Phys. Rev. Lett. 108 114301
[20] Xie Y, Popa B I, Zigoneanu L and Cummer S A 2013 Phys. Rev. Lett. 110 175501
[21] Xie Y, Konneker A, Popa B I and Cummer S A 2013 Appl. Phys. Lett. 103 201906
[22] Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202
[23] Milton G W and Cherkaev A V 1995 J. Eng. Mater. Technol. 117 483
[24] Hladky-Hennio A C, Vasseur J O, Haw G, Croenne C, Haumesser L and Norris A N 2013 Appl. Phys. Lett. 102 144103
[25] Layman C N, Naify C J, Martin T P, Calvo D C and Orris G J 2013 Phys. Rev. Lett. 111 024302
[26] Bückmann T, Thiel M, Kadic M, Schittny R and Wegener M 2014 Nat. Commun. 5 4130
[27] Chen Y, Liu X N, Xiang P and Hu G K 2016 Adv. Mech. 46 382 (in Chinese)
[28] Norris A N and Nagy A J 2011 First International Conference on Phonic Crystal, Metamaterials and Optomechanics, May 29-June 2, 2011, Santa Fe, New Mexico, USA, p. 112
[29] Kadic M, Buckmann T, Schittny R, Gumbsch P and Wegener M 2014 Phys. Rev. Appl. 2 054007
[30] Fokin V, Ambati M, Sun C and Zhang X 2007 Phys. Rev. B 76 144302
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[7] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[8] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[9] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[14] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[15] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
No Suggested Reading articles found!