Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 015203    DOI: 10.1088/1674-1056/28/1/015203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effects of resonant magnetic perturbation on the instability of single tearing mode with non-shear flow

Le Wang(王乐)1, Ming Yang(阳明)1, Wen-Bin Lin(林文斌)1,2
1 School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
2 School of Mathematics and Physics, University of South China, Hengyang 421001, China
Abstract  

Non-shear flow can change the O-point position of a magnetic island, and thus it may play an important role in the effects of resonant magnetic perturbation (RMP) on the single tearing mode. We employ the nonlinear magnetohydrodynamics model in a slab geometry to investigate how RMP affects the single tearing mode instability with non-shear flow. It is found that the driving and suppressing effects of RMP on single tearing mode instability will appear alternately. When the flow velocity is small, the suppressing effect plays a major role through the development of the mode, and the tearing mode instability will be suppressed. With the flow velocity increasing, the driving effect will increase, while the suppressing effect will decrease. When the two effects reach equilibrium, the tearing mode will become stable.

Keywords:  resonant magnetic perturbation      tearing mode      instability      flow  
Received:  02 June 2018      Revised:  30 October 2018      Accepted manuscript online: 
PACS:  52.25.Xz (Magnetized plasmas)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
  52.35.Vd (Magnetic reconnection)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11647314 and 11747311).

Corresponding Authors:  Wen-Bin Lin     E-mail:  wl@swjtu.edu.cn

Cite this article: 

Le Wang(王乐), Ming Yang(阳明), Wen-Bin Lin(林文斌) Effects of resonant magnetic perturbation on the instability of single tearing mode with non-shear flow 2019 Chin. Phys. B 28 015203

[1] Paris R B and Sy W N C 1983 Phys. Fluids 26 2966
[2] Dobrowolny M, Veltri P and Mangeney A 1983 J. Plasma Phys. 29 393
[3] Hahm T S and Kulsrud R M 1985 Phys. Fluids 28 2412
[4] Porcelli F 1987 Phys. Fluids 30 1734
[5] Chen X L and Morrison P J 1990 Phys. Fluids B 2 495
[6] Chen X L and Morrison P J 1990 Phys. Fluids B 2 2575
[7] Wang C B and Li D 1999 Acta Phys. Sin. 8 908 (in Chinese)
[8] Yu Q, Günter S, Kikuchi Y and Finken K H 2008 Nucl. Fusion 48 024007
[9] Ji X Q, Yang Q W, Feng B B, Xu Y, Sun T F and Yuan B S 2011 Chin. Phys. B 20 095205
[10] Mao A H, Li J Q, Liu J Y and Kishimoto Y 2014 Phys. Plasmas 21 052304
[11] Li J C, Gong X Y, Dong J Q, Wang J and Yin L 2016 Chin. Phys. B 25 045201
[12] Zhang W, Ma Z W and Wang S 2017 Phys. Plasmas 24 102510
[13] Zhang W, Wang S and Ma Z W 2017 Phys. Plasmas 24 062510
[14] Ofman L, Morrison P J and Steinolfson R S 1993 Phys. Fluids B 5 376
[15] Kirk A, Nardon E, Akers R, Bécoulet M, Temmerman G De, Dudson B, Hnat B, Liu Y Q, Martin R, Tamain P, Taylor D and the MAST team 2010 Nucl. Fusion 50 034008
[16] Hu Q M, Yu Q, Rao B, Ding Y H, Hu X W, Zhuang G and the J-TEXT Team 2012 Nucl. Fusion 52 083011
[17] Hu Q M, Rao B, Yu Q, Ding Y H, Zhuang G, Jin W and Hu X W 2013 Phys. Plasmas 20 092502
[18] Frassinetti L, Fridström R, Menmuir S and Brunsell P R 2014 Plasma Phys. Control. Fusion 56 104001
[19] Wang Z X, Wang X G, Dong J Q, Lei Y A, Long Y X, Mou Z Z and Qu W X 2007 Phys. Rev. Lett 99 185004
[20] Li J H and Ma Z W 2010 J. Geophys. Res.: Space Phys. 115 A09216
[21] Wang L, Lin W B and Wang X Q 2018 EPL 121 45001
[22] Pritchett P L, Lee Y C and Drake J F 1980 Phys. Fluids 23 1368
[23] Wang Z X, Wang X G, Dong J Q, Kishimoto Y and Li J Q 2008 Phys. Plasmas 15 082109
[24] Zhang C L and Ma Z W 2009 Phys. Plasmas 16 122113
[25] Ma Z W, Wang X G and Bhattacharjee A 1996 Phys. Plasmas 3 2427
[26] Wang X, Bhattacharjee A, Ma Z W, Ren C, Hegna C C and Callen J D 1998 Phys. Plasmas 5 2291
[27] Mao A H, Li J Q, Kishimoto Y and Liu J Y 2013 Phys. Plasmas 20 022114
[28] Shen C and Liu Z X 1998 Plasma Phys. Control. Fusion 40 1
[1] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] Effect of kinetic ions on the toroidal double-tearing modes
Ruibo Zhang(张睿博), Lei Ye(叶磊), Yang Chen, Nong Xiang(项农), and Xiaoqing Yang(杨小庆). Chin. Phys. B, 2023, 32(2): 025203.
[4] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[5] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[6] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[7] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[8] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[13] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[14] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[15] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
No Suggested Reading articles found!