Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010502    DOI: 10.1088/1674-1056/28/1/010502
GENERAL Prev   Next  

Attractors with controllable basin sizes from cooperation of contracting and expanding dynamics in pulse-coupled oscillators

Hai-Lin Zou(邹海林) Zi-Chen Deng(邓子辰)
School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

Unstable attractors are a novel type of attractor with local unstable dynamics, but with positive measures of basins. Here, we introduce local contracting dynamics by slightly modifying the function which mediates the interactions among the oscillators. Thus, the property of unstable attractors can be controlled through the cooperation of expanding and contracting dynamics. We demonstrate that one certain type of unstable attractor is successfully controlled through this simple modification. Specifically, the staying time for unstable attractors can be prolonged, and we can even turn the unstable attractors into stable attractors with predictable basin sizes. As an application, we demonstrate how to realize the switching dynamics that is only sensitive to the finite size perturbations.

Keywords:  unstable attractors      switching dynamics      pulse-coupled oscillators  
Received:  04 September 2018      Revised:  22 October 2018      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  87.19.lj (Neuronal network dynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11502200 and 91648101) and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102018zy012).

Corresponding Authors:  Hai-Lin Zou     E-mail:  zouhailin@nwpu.edu.cn

Cite this article: 

Hai-Lin Zou(邹海林) Zi-Chen Deng(邓子辰) Attractors with controllable basin sizes from cooperation of contracting and expanding dynamics in pulse-coupled oscillators 2019 Chin. Phys. B 28 010502

[1] Edward O 2002 Chaos in Dynamical Systems (2nd Edn.) (Cambridge: Cambridge University Press)
[2] Zhang G T and Wang F Q 2018 Chin. Phys. B 27 018201
[3] Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N V, Leonov G A and Prasad A 2016 Physics Reports 637 1
[4] Bao J H and Chen D D 2017 Chin. Phys. B 26 080201
[5] Tang Y X, Khalaf A J M and Rajagopal 2018 Chin. Phys. B 27 040502
[6] Wang Y, Zheng G C and Liu C X 2018 Acta Physica Sinica 67 050502
[7] Schittler Neves F and Timme M 2012 Phys. Rev. Lett. 109 018701
[8] Timme M, Wolf F and Geisel T 2002 Phys. Rev. Lett. 89 154105
[9] Timme M, Wolf F and Geisel T 2003 Chaos 13 377
[10] Ashwin P and Timme M 2005 Nonlinearity 18 2035
[11] Milnor J 1985 Commun. Math. Phys. 99 177
[12] Broer H, Efstathiou K and Subramanian E 2008 Nonlinearity 21 1385
[13] Zou H L, Deng Z C, Hu W P, Aihara K and Lai Y C 2017 Nonlinear Dyn. 89 887
[14] Mirollo R E and Strogatz S H 1990 SIAM J. Appl. Math. 50 1645
[15] Tsodyks M, Mitkov I and Sompolinsky H 1993 Phys. Rev. Lett. 71 1280
[16] Vreeswijk C V 1996 Phys. Rev. E 54 5522
[17] Gerstner W 1996 Phys. Rev. Lett. 76 1755
[18] Kanamaru T and Aihara K 2010 Neural Comp. 22 1383
[19] Luccioli S and Politi A 2010 Phys. Rev. Lett. 105 158104
[20] Zou H, Gong X and Lai C H 2010 Phys. Rev. E 82 046209
[21] Zou H L, Li M, Lai C H and Lai Y C 2012 Phys. Rev. E 86 066214
[22] Kirst C and Timme M 2008 Phys. Rev. E 78 065201(R)
[23] Schittler Neves F and Timme M 2009 J. Phys. A: Math. Theo. 42 345103
[24] Zou H L, Katori Y, Deng Z C, Aihara K and Lai Y C 2015 Chaos 25 103109
[25] Hartle H and Wackerbauer R 2017 Phys. Rev. E 96 032223
[26] Ashwin P, Creaser J and Tsanevaatanasova K 2018 arXiv 1804.00550
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[11] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[12] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[13] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[14] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[15] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
No Suggested Reading articles found!