Molecular dynamics simulations on the dynamics of two-dimensional rounded squares
Zhang-lin Hou(侯章林)1, Ying Ju(句颖)1, Yi-wu Zong(宗奕吾)1, Fang-fu Ye(叶方富)2, Kun Zhao(赵坤)1
1 Key Laboratory of Systems Bioengineering(Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2 Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics of Chinese Academy of Sciences, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
The collective motion of rounded squares with different corner-roundness ζ is studied by molecular dynamics (MD) simulation in this work. Three types of translational collective motion pattern are observed, including gliding, hopping and a mixture of gliding and hopping. Quantitatively, the dynamics of each observed ordered phase is characterized by both mean square displacement and van Hove functions for both translation and rotation. The effect of corner-roundness on the dynamics is further studied by comparing the dynamics of the rhombic crystal phases formed by different corner-rounded particles at a same surface fraction. The results show that as ζ increases from 0.286 to 0.667, the translational collective motion of particles changes from a gliding-dominant pattern to a hopping-dominant pattern, whereas the rotational motion pattern is hopping-like and does not change in its type, but the rotational hopping becomes much more frequent as ζ increases (i.e., as particles become more rounded). A simple geometrical model is proposed to explain the trend of gliding motion observed in MD simulations.
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.