Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088203    DOI: 10.1088/1674-1056/27/8/088203
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Molecular dynamics simulations on the dynamics of two-dimensional rounded squares

Zhang-lin Hou(侯章林)1, Ying Ju(句颖)1, Yi-wu Zong(宗奕吾)1, Fang-fu Ye(叶方富)2, Kun Zhao(赵坤)1
1 Key Laboratory of Systems Bioengineering(Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2 Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics of Chinese Academy of Sciences, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

The collective motion of rounded squares with different corner-roundness ζ is studied by molecular dynamics (MD) simulation in this work. Three types of translational collective motion pattern are observed, including gliding, hopping and a mixture of gliding and hopping. Quantitatively, the dynamics of each observed ordered phase is characterized by both mean square displacement and van Hove functions for both translation and rotation. The effect of corner-roundness on the dynamics is further studied by comparing the dynamics of the rhombic crystal phases formed by different corner-rounded particles at a same surface fraction. The results show that as ζ increases from 0.286 to 0.667, the translational collective motion of particles changes from a gliding-dominant pattern to a hopping-dominant pattern, whereas the rotational motion pattern is hopping-like and does not change in its type, but the rotational hopping becomes much more frequent as ζ increases (i.e., as particles become more rounded). A simple geometrical model is proposed to explain the trend of gliding motion observed in MD simulations.

Keywords:  molecular dynamics simulation      rounded square      hopping      gliding      collective motion  
Received:  30 April 2018      Revised:  05 June 2018      Accepted manuscript online: 
PACS:  82.70.Dd (Colloids)  
  64.75.Yz (Self-assembly)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21573159 and 21621004).

Corresponding Authors:  Fang-fu Ye, Kun Zhao     E-mail:  fye@iphy.ac.cn;kunzhao@tju.edu.cn

Cite this article: 

Zhang-lin Hou(侯章林), Ying Ju(句颖), Yi-wu Zong(宗奕吾), Fang-fu Ye(叶方富), Kun Zhao(赵坤) Molecular dynamics simulations on the dynamics of two-dimensional rounded squares 2018 Chin. Phys. B 27 088203

[1] Anderson J A, Antonaglia J, Millan J A, Engel M and Glotzer S C 2017 Phys. Rev. X 7 021001
[2] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181
[3] Halperin B I and Nelson D R 1978 Phys. Rev. Lett. 41 121
[4] Young A P 1979 Phys. Rev. B 19 1855
[5] Bernard E P and Krauth W 2011 Phys. Rev. Lett. 107 155704
[6] Marcus A H, Schofield J and Rice S A 1999 Phys. Rev. E 60 5725
[7] Zangi R and Rice S A 2004 Phys. Rev. Lett. 92 035502
[8] Kim J, Kim C and Sung B J 2013 Phys. Rev. Lett. 110 047801
[9] Zahn K and Maret G 2000 Phys. Rev. Lett. 85 3656
[10] Zhao K, Bruinsma R and Mason T G 2012 Nat. Commun. 3 801
[11] Zhao K, Bruinsma R and Mason T G 2011 Proc. Natl. Acad. Sci. USA 108 2684
[12] Zhao K and Mason T G 2009 Phys. Rev. Lett. 103 208302
[13] Zhao K and Mason T G 2015 Proc. Natl. Acad. Sci. USA 112 12063
[14] Zhao K and Mason T G 2014 J. Phys.: Condens. Matter 26 152101
[15] Zhao K and Mason T G 2012 J. Am. Chem. Soc. 134 18125
[16] Rossi L and Mason T G 2015 Soft Matter 11 2461
[17] Wojciechowski K W and Frenkel D 2004 Comput. Meth. Sci. Technol. 10 235
[18] Schilling T, Pronk S, Mulder B and Frenkel D 2005 Phys. Rev. E 71 036138
[19] Benedict M and Maguire J F 2004 Phys. Rev. B 70 3352
[20] Avendaño C and Escobedo F A 2012 Soft Matter 8 4675
[21] Zhang T H, Cao J S, Liang Y, et al. 2016 Acta Phys. Sin. 65 176401 (in Chinese)
[22] Wang Feng and Han Y L 2018 Physics 47 238 (in Chinese)
[23] Sun Y L, Wang H G and Zhang Z X 2018 Acta Phys. Sin. 67 106401 (in Chinese)
[24] Weeks J D 1971 J. Chem. Phys. 54 5237
[25] Ahmed A and Sadus R J 2009 Phys. Rev. E 80 061101
[26] Nosé S 1984 J. Chem. Phys. 81 511
[27] Nosé S 2002 Mol. Phys. 100 191
[28] Hoover W G 1985 Phys. Rev. A 31 1695
[29] Evans D J and Holian B L 1985 J. Chem. Phys. 83 4069
[30] Hoover W G 1986 Phys. Rev. A 34 2499
[31] Frenkel D and Smit B 2001 Understanding Molecular Simulation: From Algorithms to Applications (New York: Academic Press, Inc.) pp. 147-158
[32] Zhu Y L, Liu H, Li Z W, Qian H J, Milano G and Lu Z Y 2013 J. Comput. Chem. 34 2197
[33] Zhu Y L, Pan D, Li Z W, Liu H, Qian H J, Zhao Y, Lu Z Y and Sun Z Y 2018 Mol. Phys. 116 1065
[34] Hopkins P, Fortini A, Archer A J and Schmidt M 2010 J. Chem. Phys. 133 249
[35] Han Y, Ha N Y, Alsayed A M and Yodh A G 2008 Phys. Rev. E 77 041406
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[6] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[7] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[8] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[9] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[10] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[11] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[12] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[13] Graph dynamical networks for forecasting collective behavior of active matter
Yanjun Liu(刘彦君), Rui Wang(王瑞), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2022, 31(11): 116401.
[14] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[15] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
No Suggested Reading articles found!