ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High power external-cavity surface-emitting laser with front and end pump |
Lidan Jiang(蒋丽丹)1, Renjiang Zhu(朱仁江)1, Maohua Jiang(蒋茂华)1, Dingke Zhang(张丁可)1, Yuting Cui(崔玉亭)1, Peng Zhang(张鹏)1, Yanrong Song(宋晏蓉)2 |
1 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China; 2 College of Applied Sciences, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are reported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of Al0.2GaAs/Al0.98GaAs distributed Bragg reflectors. The maximum output power of 3 W, optical-to-optical conversion efficiency of 22.4%, and slope efficiency of 29.8% are obtained with 5-℃ heatsink temperature under the front pump, while the maximum output power of 1.1 W, optical-to-optical conversion efficiency of 23.2%, and slope efficiency of 30.8% are reached with 5-℃ heatsink temperature under the end pump. Influences of thermal effects on the output power of the laser with front and end pump are discussed.
|
Received: 03 February 2018
Revised: 23 April 2018
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
42.60.Pk
|
(Continuous operation)
|
|
Fund: Project supported by the Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2015jcyjBX0098), the National Natural Science Foundation of China (Grant No. 61575011), and the Foundation for the Creative Research Groups of Higher Education of Chongqing (Grant No. CXTDX201601016). |
Corresponding Authors:
Peng Zhang, Yanrong Song
E-mail: zhangpeng2010@cqnu.edu.cn;yrsong@bjut.edu.cn
|
Cite this article:
Lidan Jiang(蒋丽丹), Renjiang Zhu(朱仁江), Maohua Jiang(蒋茂华), Dingke Zhang(张丁可), Yuting Cui(崔玉亭), Peng Zhang(张鹏), Yanrong Song(宋晏蓉) High power external-cavity surface-emitting laser with front and end pump 2018 Chin. Phys. B 27 084205
|
[1] |
Kuznetsov M, Hakimi F, Sprague R and Mooradian A 1999 IEEE. J. Sel. Top. Quantum Electron. 5 561
|
[2] |
Tropper A C, Foreman H D, Garnache A, Wilcox K G, Hoogl and S H 2004 J. Phys. D: Appl. Phys. 37 R75
|
[3] |
Chilla J, Shu Q Z, Zhou H, Weiss E, Reed M and Spinelli L 2007 Proc. SPIE 6451 645109
|
[4] |
KimK S, YooJ, Kim G, Lee S, Cho S, Kim J, Kim T and Park Y 2007 IEEE. Photon. Technol. Lett. 19 1655
|
[5] |
Heinen B, Wang T L, Sparenberg M, Weber A, Kunert B, Hader J, Koch S W, Moloney J V, Koch M and Stolz W 2012 Electron. Lett. 48 516
|
[6] |
Kantola E, Leinonen T, Ranta S, Tavast M, Penttinen J P and Guina M 2015 Proc. SPIE 9349 93490U
|
[7] |
Guina M, Rantamäki A and Härkönen A 2017 J. Phys. D: Appl. Phys. 50 383001
|
[8] |
Calvez S, Hastie J E, Guina M, Okhotnikov O G and Dawson M D 2009 Laser. Photon. Rev. 3 407
|
[9] |
Tilma B W, Mangold M, Zaugg C A, Link S M, Waldburger D, Klenner A, Mayer A S, Gini E, Golling M and Keller U 2015 Light-Sci. Appl. 4 e310
|
[10] |
Lee J H, Kim J Y, Lee S M, Yoo J R, Kim K S, Cho S H, Lim S J, Kim G B, Hwang S M, Kim T and Park Y J 2006 IEEE Photon. Technol. Lett. 18 2117
|
[11] |
Leinonen T, Iakovlev V, Sirbu A, Kapon E and Guina M 2017 Opt. Express 25 7008
|
[12] |
Kantola E, Leinonen T, Ranta S, Tavast M and Guina M 2014 Opt. Express 22 6372
|
[13] |
Wilcox K G, Tropper A C, Beere H E, Ritchie D A, Kunert B, Heinen B and Stolz W 2013 Opt. Express 21 1599
|
[14] |
Lee J H, Lee S M, Kim T and Park Y J 2006 Appl. Phys. Lett. 89 241107
|
[15] |
Kim G B, Kim J Y, Lee J H, Yoo J R, Kim K S, Lee S M, Cho S H, Lim S J, Kim T and Park Y J 2006 Appl. Phys. Lett. 89 181106
|
[16] |
Cho S, Kim G B, Kim J Y, Kim K S, Lee S M, Yoo J R, Kim T and Park Y J 2007 IEEE Photon. Technol. Lett. 19 1325
|
[17] |
Liau Z L 2000 Appl. Phys. Lett. 77 651
|
[18] |
Zhou D B, Liang S, Han L S, Zhao L J and Wang W 2017 Chin. Phys. Lett. 34 034204
|
[19] |
Heng W, Peng J, Shuai L, Ming J L, Tao Y, Kun L X, Jian W, Qi A, Hua W Y, Mei C H, Fei F W, Ju W and Guo W Z 2013 Chin. Phys. B 22 094211
|
[20] |
Wang L, Gao C, Gao M, Li Y, Yue F, Zhang J and Tang D 2014 Opt. Express 22 254
|
[21] |
Tan Y, Zhang H, Zhao C, Akhmadaliev S, Zhou S and Chen F 2015 Opt. Lett. 40 637
|
[22] |
Tang P, Zhang X, Zhao C, Wang Y, Zhang H, Shen D, Wen S, Tang D and Fan D 2013 IEEE Photon. J. 5 1500707
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|