Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077801    DOI: 10.1088/1674-1056/27/7/077801
Special Issue: TOPICAL REVIEW — SECUF: Breakthroughs and opportunities for the research of physical science
TOPICAL REVIEW—SECUF: Breakthroughs and opportunities for the research of physical science Prev   Next  

Raman scattering under extreme conditions

Feng Jin(金峰)1, Yang Yang(杨洋)2, An-Min Zhang(张安民)1, Jian-Ting Ji(籍建葶)1,2, Qing-Ming Zhang(张清明)1,2,3
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  Raman scattering is a versatile and powerful technique and has been widely used in modern scientific research and vast industrial applications. It is one of the fundamental experimental techniques in condensed matter physics, since it can sensitively probe the basic elementary excitations in solids like electron, phonon, magnon, etc. The application of extreme conditions (low temperature, high magnetic field, high pressure, etc.) to Raman scattering, will push its capability up to an unprecedented level, because this enables us to look into new quantum phases driven by extreme conditions, trace the evolution of the excitations and their coupling, and hence uncover the underlying physics. This review contains two topics. In the first part, we will introduce the Raman facility under extreme conditions, belonging to the optical spectroscopy station of Synergetic Extreme Condition User Facilities (SECUF), with emphasis on the system design and the capability the facility can provide. Then in the second part we will focus on the applications of Raman scattering under extreme conditions to a variety of condensed matter systems such as superconductors, correlated electron systems, charge density waves (CDW) materials, etc. Finally, as a rapidly developing technique, time-resolved Raman scattering will be highlighted here.
Keywords:  Raman scattering technique      extreme conditions      correlated electron systems      time-resolved Raman scattering  
Received:  03 April 2018      Revised:  24 April 2018      Accepted manuscript online: 
PACS:  78.30.-j (Infrared and Raman spectra)  
  07.55.Db (Generation of magnetic fields; magnets)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  78.47.je (Time resolved light scattering spectroscopy)  
Fund: Project supported by the Ministry of Science and Technology of China (Grant Nos. 2016YFA0300504 and 2017YFA0302904) and the National Natural Science Foundation of China (Grant Nos. 11474357, 11774419, 11604383, and 11704401). Y. Y. was supported by the Scientific Equipment Development Project of Chinese Academy of Sciences (Grant No. YJKYYQ20170027).
Corresponding Authors:  Qing-Ming Zhang     E-mail:  qingmingzhang@gmail.com

Cite this article: 

Feng Jin(金峰), Yang Yang(杨洋), An-Min Zhang(张安民), Jian-Ting Ji(籍建葶), Qing-Ming Zhang(张清明) Raman scattering under extreme conditions 2018 Chin. Phys. B 27 077801

[1] Devereaux T P and Hackl R 2007 Rev. Mod. Phys. 79 175
[2] Lemmens P, Güntherodt G and Gros C 2003 Phys. Rep. 375 1
[3] Goncharov A F 2012 International Journal of Spectroscopy 2012 1
[4] Goncharov A F and Struzhkin V V 2003 J. Raman Spectrosc. 34 532
[5] Lucazeau G 2003 J. Raman Spectrosc. 34 478
[6] Gillet P 1996 Phys. Chem. Miner. 23 263
[7] Kume T, Hiraoka T, Ohya Y, Sasaki S and Shimizu H 2005 Phys. Rev. Lett. 94 065506
[8] Cummins H Z 1990 Phys. Rep. 185 211
[9] Cuk T, Struzhkin V V, Devereaux T P, Goncharov A F, Kendziora C A, Eisaki H, Mao H K and Shen Z X 2008 Phys. Rev. Lett. 100 217003
[10] Kakihana M, Osada M, Käll M, Börjesson L, Mazaki H, Yasuoka H, Yashima M and Yoshimure M 1996 Phys. Rev. B 53 11796
[11] Struzhkin V V, Schwarz U, Wilhelm H and Syassen K 1993 Mater. Sci. Eng. A 168 103
[12] Devereaux T P, Virosztek A and Zawadowski A 1995 Phys. Rev. B 51 505
[13] Snow C S, Karpus J F, Cooper S L, Kidd T E and Chiang T C 2003 Phys. Rev. Lett. 91 136402
[14] Bera A, Pal K, Muthu D V S, Sen S, Guptasarma P, Waghmare U V and Sood A K 2013 Phys. Rev. Lett. 110 107401
[15] Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C, Singh A K, Akinwande D and Lin J F 2014 Nat. Commun. 22 087407
[16] McWhan D B, Fleming R M, Moncton D E and DiSalvo F J 1980 Phys. Rev. Lett. 45 269
[17] Kim M, Chen X M, Joe Y I, Fradkin E, Abbamonte P and Cooper S L 2010 Phys. Rev. Lett. 104 136402
[18] Byrum T, Gleason S L, Thaler A, Macdougall G J and Cooper S L 2016 Phys. Rev. B 93 184418
[19] Gleason S L, Byrum T, Gim Y, Thaler A, Abbamonte P, Macdougall G J, Martin L W, Zhou H D and Cooper S L 2014 Phys. Rev. B 89 134402
[20] Rovillain P, Cazayous M, Gallais Y, Measson M A, Sacuto A, Sakata H and Mochizuki M 2011 Phys. Rev. Lett. 107 027202
[21] Kim M, Chen X M, Wang X, Nelson C S, Budakian R, Abbamonte P and Cooper S L 2011 Phys. Rev. B 84 174424
[22] Ji J T, Zhang A M, Xia T L, Cao Q, Liu G L, Hou D and Zhang Q M 2010 Phys. Rev. B 82 014408
[23] Faugeras C, Kossacki P, Basko D M, Amado M, Sprinkle M, Berger C, De Heer W A and Potemski M 2010 Phys. Rev. B 81 155436
[24] Chung J H, Kim J H, Lee S H, Sato T J, Suzuki T, Katsumura M and Katsufuji T 2008 Phys. Rev. B 77 054412
[25] Jensen G B and Nielsen O V 1974 J. Phys. C 7 409
[26] Varma C M, Littlewood P B, Schmitt-Rink S, Abrahams E and Ruckenstein A E 1989 Phys. Rev. Lett. 63 1996
[27] Shastry B S and Shraiman B I 1990 Phys. Rev. Lett. 65 1068
[28] Cooper S L, Klein M V, Pazol B G, Rice J P and Ginsberg D M 1988 Phys. Rev. B 37 5920
[29] Blumberg G, Kang M and Klein M V 1997 Phys. Rev. Lett. 78 2461
[30] Qazilbash M M, Koitzsch A, Dennis B S, Gozar A, Balci H, Kendziora C A, Greene R L and Blumberg G 2005 Phys. Rev. B 72 214510
[31] Geng Z H 2014 Phys. Lett. A 378 1309
[32] Dalichaouch Y, Lee B W, Seaman C L, Markert J T and Maple M B 1990 Phys. Rev. Lett. 64 599
[33] Mackenzie A P, Julian S R, Lonzarich G G, Carrington A, Hughes S D, Liu R S and Sinclair D C 1993 Phys. Rev. Lett. 71 1238
[34] Brinzari T V, Haraldsen J T, Chen P, Sun Q C, Kim Y, Tung L C, Litvinchuk A P, Schlueter J A, Smirnov D, Manson J L, Singleton J and Musfeldt J L 2013 Phys. Rev. Lett. 111 047202
[35] Strach T, Ruf T, Cardona M, Jandl S, Nekvasil V, Chen C, Wanklyn B M, Zhigunov D I, Barilo S N and Shiryaev S V 1997 Phys. Rev. B 56 5578
[36] Ruf T, Heyen E T, Cardona M, Mesot J and Furrer A 1992 Phys. Rev. B 46 11792
[37] Perreault B, Rachel S, Burnell F J and Knolle J 2017 Phys. Rev. B 95 184429
[38] Henni Y, Ojeda Collado H P, Nogajewski K, Molas M R, Usaj G, Balseiro C A, Orlita M, Potemski M and Faugeras C 1992 Nano Lett. 16 3710
[39] García-Flores A F, Terashita H, Granado E and Kopelevich Y 2009 Phys. Rev. B 79 113105
[40] Sethi A, Byrum T, McAuliffe R D, Gleason S L, Slimak J E, Shoemaker D P and Cooper S L 2017 Phys. Rev. B 95 174413
[41] Mallett B P P, Wolf T, Gilioli E, Licci F, Williams G V M, Kaiser A B, Ashcroft N W, Suresh N and Tallon J L 2013 Phys. Rev. Lett. 111 237001
[42] Cazayous M, Gallais Y, Sacuto A, De Sousa R, Lebeugle D and Colson D 2008 Phys. Rev. Lett. 101 037601
[43] Kuroe H, Kusakabe K, Oosawa A, Sekine T, Yamada F, Tanaka H and Matsumoto M 2008 Phys. Rev. B 77 134420
[44] Struzhkin V V, Goncharov A F, Mao H K, Hemley R J, Moore S W, Graybeal J M, Sarrao J and Fisk Z 2000 Phys. Rev. B 62 3895
[45] Karpus J F, Snow C S, Gupta R, Barath H, Cooper S L and Cao G 2006 Phys. Rev. B 73 134407
[46] Snow C S, Cooper S L, Cao G, Crow J E, Fukazawa H, Nakatsuji S and Maeno Y 2002 Phys. Rev. Lett. 89 226401
[47] Gupta R, Kim M, Barath H, Cooper S L and Cao G 2006 Phys. Rev. Lett. 96 067004
[48] Fleury P A and Loudon R 1968 Phys Rev. 166 514
[49] Sugai S, Sato M, Kobayashi T, Akimitsu J, Ito T, Takagi H, Uchida S, Hosoya S, Kajitani T and Fukuda T 1990 Phys. Rev. B 42 1045
[50] Aronson M C, Dierker S B, Dennis B S, Cheong S W and Fisk Z 1991 Phys. Rev. B 44 4657
[51] Katano S, Môri N, Takahashi H and Takei H 1989 J. Phys. Soc. Jpn. 58 3890
[52] Massey M J, Chen N H, Allen J W and Merlin R 1990 Phys. Rev. B 42 8776
[53] Fausti D, Misochko O V and Van Loosdrecht P H M 2009 Phys. Rev. B 80 161207
[54] Wang X, Kunc K, Loa I, Schwarz U and Syassen K 2006 Phys. Rev. B 74 134305
[55] Saichu R P, Mahns I, Goos A, Binder S, May P, Singer S G, Schulz B, Rusydi A, Unterhinninghofen J, Manske D, Guptasarma P, Williamsen M S and Rübhausen M 2009 Phys. Rev. Lett. 102 177004
[56] Machtoub L, El Machtoub G, Shimoyama J, Suemoto T and Kishio K 2003 Physica C 392 291
[57] Machtoub L H, Suemoto T, Shimoyama J and Kishio K 2002 J. Raman Spectrosc. 33 471
[1] Cubic anvil cell apparatus for high-pressure and low-temperature physical property measurements
Jin-Guang Cheng(程金光), Bo-Sen Wang(王铂森), Jian-Ping Sun(孙建平), Yoshiya Uwatoko. Chin. Phys. B, 2018, 27(7): 077403.
[2] Electronic structure and magnetic properties of rare-earth perovskite gallates from first principles
A Dahani, H Alamri, B Merabet, A Zaoui, S Kacimi, A Boukortt, M Bejar. Chin. Phys. B, 2017, 26(1): 017101.
No Suggested Reading articles found!