Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 053101    DOI: 10.1088/1674-1056/20/5/053101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

High accuracy calculation of the hydrogen negative ion in strong magnetic fields

Zhao Ji-Jun(赵继军), Wang Xiao-Feng(王晓峰), and Qiao Hao-Xue(乔豪学)
Department of Physics, Wuhan University, Wuhan 430072, China
Abstract  Using a full configuration-interaction method with Hylleraas--Gaussian basis function, this paper investigates the 1$^{1}$0$^{ + }$,  1$^{1}$(--1)$^{ + }$ and 1$^{1}$(--2)$^{ + }$ states of the hydrogen negative ion in strong magnetic fields. The total energies, electron  detachment energies and derivatives of the total energy with respect to the magnetic field are presented as functions of magnetic field over a  wide range of field strengths. Compared with the available theoretical data, the accuracy for the energies is enhanced significantly. The field  regimes $3 < \gamma < 4$ and $0.02 < \gamma < 0.05$, in which the 1$^{1}$(--1)$^{ + }$ and 1$^{1}$(--2)$^{ + }$ states start to become bound,  respectively, are also determined based on the calculated electron detachment energies.
Keywords:  strong magnetic field      hydrogen negative ion      total energy      electron detachment energy  
Received:  14 September 2010      Revised:  01 October 2010      Accepted manuscript online: 
PACS:  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  31.15.ac (High-precision calculations for few-electron (or few-body) atomic systems)  
  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874133).

Cite this article: 

Zhao Ji-Jun(赵继军), Wang Xiao-Feng(王晓峰), and Qiao Hao-Xue(乔豪学) High accuracy calculation of the hydrogen negative ion in strong magnetic fields 2011 Chin. Phys. B 20 053101

[1] Ostriker J P and Hartwick F D A 1968 Astrophys. J. 153 797
[2] Kemp J C, Swedlund J B, Landstreet J D and Angel J R P 1970 Astrophys. J. 161 L77
[3] Trümper J, Pietsch W, Reppin C, Voges W, Staubert R and Kendziorra E 1978 Astrophys. J. 219 L105
[4] Ruder H, Wunner G, Herold H and Geyer F 1994 Atoms in Strong Magnetic Fields (Berlin: Springer)
[5] Rõsner W, Wunner G, Herold H and Ruder H 1984 J. Phys. B: At. Mol. Phys. 17 29
[6] Kravchenko Y P, Liberman M A and Johansson B 1996 Phys. Rev. A 54 287
[7] Kravchenko Y P, Liberman M A and Johansson B 1996 Phys. Rev. Lett. 77 619
[8] Zhao L B and Du M L 2009 Commun. Theor. Phys. 52 339
[9] Hill R N 1977 Phys. Rev. Lett. 38 643
[10] Avron J E, Herbst I W and Simon B 1981 Commun. Math. Phys. 79 529
[11] Henry R J W, O'Connell R F, Smith E R, Chanmugam G and Rajagopal A K 1974 Phys. Rev. D 9 329
[12] Mueller R O, Rau A R P and Spruch L 1975 Phys. Rev. A 11 789
[13] Larsen D M 1979 Phys. Rev. Lett. 42 742
[14] Larsen D M 1979 Phys. Rev. B 20 5217
[15] Larsen D M 1981 Phys. Rev. B 23 4076
[16] Park C H and Starace A F 1984 Phys. Rev. A 29 442
[17] Vincke M and Baye D 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2089
[18] Larsen D M and McCann S Y 1992 Phys. Rev. B 46 3966
[19] Larsen D M and McCann S Y 1993 Phys. Rev. B 47 13175
[20] Al-Hujaj O A and Schmelcher P 2000 Phys. Rev. A 61 063413
[21] Wang X F and Qiao H X 2008 Phys. Rev. A 77 043414
[22] Wang X F, Zhao J J and Qiao H X 2009 Phys. Rev. A 80 053425
[23] Becken W, Schmelcher P and Diakonos F K 1999 J. Phys. B: At. Mol. Opt. Phys. 32 1557
[24] Persson B J and Taylor P R 1996 J. Chem. Phys. 105 5915
[25] Drake G W F, Cassar M M and Nistor R A 2002 Phys. Rev. A 65 054501
[26] cSkirovglu S, Dovgan U, Yhildhiz A, Akgüngõr K, Epik H, Ergün Y, Sarhi H and Sõkmen .I 2009 Chin. Phys. B 18 1578
[27] cSkirovglu S, Akgüngõr K and Sõkmen .I 2009 Chin. Phys. B 18 2238
[28] Scrinzi A 1998 Phys. Rev. A 58 3879 endfootnotesize
[1] Charge transfer of He2+ with H in a strong magnetic field
Liu Chun-Lei (刘春雷), Zou Shi-Yang (邹士阳), He Bin (何斌), Wang Jian-Guo (王建国). Chin. Phys. B, 2015, 24(9): 093402.
[2] Effect of superstrong magnetic field on electron screening at the crusts of neutron stars
Liu Jing-Jing(刘晶晶). Chin. Phys. B, 2010, 19(9): 099601.
[3] Effect of strong magnetic field on chemical potential and electron capture in magnetar
Gao Jie(高杰), Luo Zhi-Quan(罗志全), Liu Wei-Wei(刘伟伟), and Li Gang(李港). Chin. Phys. B, 2010, 19(9): 099701.
[4] Statistic properties of Fermi gas in a strong magnetic field
Men Fu-Dian(门福殿) and Fan Zhao-Lan(范召兰). Chin. Phys. B, 2010, 19(3): 030502.
[5] Accurate calculations of the helium atom in magnetic fields
Zhao Ji-Jun(赵继军), Wang Xiao-Feng(王晓峰), and Qiao Hao-Xue(乔豪学). Chin. Phys. B, 2010, 19(11): 113102.
[6] Nuclear energy generation rates on magnetar surfaces
Luo Zhi-Quan(罗志全), Liu Hong-Lin(刘宏林) , Liu Jing-Jing(刘晶晶), and Lai Xiang-Jun(赖祥军). Chin. Phys. B, 2009, 18(1): 377-381.
[7] Effect of superstrong magnetic fields on thermonuclear reaction rates on the surface of magnetars
Liu Hong-Lin(刘宏林), Luo Zhi-Quan(罗志全),Lai Xiang-Jun(赖祥军), and Liu Jing-Jing(刘晶晶) . Chin. Phys. B, 2008, 17(6): 2317-2320.
[8] Effect of strong magnetic field on electron capture of iron group nuclei in crusts of neutron stars
Liu Jing-Jing(刘晶晶), Luo Zhi-Quan(罗志全), Liu Hong-Lin(刘宏林), and Lai Xiang-Jun(赖祥军). Chin. Phys. B, 2007, 16(9): 2671-2675.
[9] Influence of strong magnetic field on $\beta$ decay in the crusts of neutron stars
Zhang Jie (张洁), Liu Men-Quan (刘门全), Luo Zhi-Quan (罗志全). Chin. Phys. B, 2006, 15(7): 1477-1480.
[10] Two-dimensional hydrogen negative ion in a magnetic field
Xie Wen-Fang (解文方). Chin. Phys. B, 2004, 13(11): 1806-1810.
[11] An effective potential method for the calculation of hydrogen molecule ion energy in a strong magnetic field
Jiao Zhi-Yong (焦志勇), Li Yu-Cheng (李毓成). Chin. Phys. B, 2002, 11(5): 467-471.
No Suggested Reading articles found!