Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060501    DOI: 10.1088/1674-1056/27/6/060501
GENERAL Prev   Next  

Dynamic characteristics in an external-cavity multi-quantum-well laser

Sen-Lin Yan(颜森林)
Department of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
Abstract  This paper outlines our studies of bifurcation, quasi-periodic road to chaos and other dynamic characteristics in an external-cavity multi-quantum-well laser with delay optical feedback. The bistable state of the laser is predicted by finding theoretically that the gain shifts abruptly between two values due to the feedback. We make a linear stability analysis of the dynamic behavior of the laser. We predict the stability scenario by using the characteristic equation while we make an approximate analysis of the stability of the equilibrium point and discuss the quantitative criteria of bifurcation. We deduce a formula for the relaxation oscillation frequency and prove theoretically that this formula function relates to the loss of carriers transferring between well regime and barrier regime, the feedback level, the delayed time and the other intrinsic parameters. We demonstrate the dynamic distribution and double relaxation oscillation frequency abruptly changing in periodic states and find the multi-frequency characteristic in a chaotic state. We illustrate a road to chaos from a stable state to quasi-periodic states by increasing the feedback level. The effects of the transfers of carriers and the escaping of carriers on dynamic behavior are analyzed, showing that they are contrary to each other via the bifurcation diagram. Also, we show another road to chaos after bifurcation through changing the linewidth enhancement factor, the photon loss rate and the transfer rate of carriers.
Keywords:  bifurcation      chaos      multi-quantum-well laser      optical feedback  
Received:  20 February 2018      Revised:  23 March 2018      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  02.30.Ks (Delay and functional equations)  
  02.30.Oz (Bifurcation theory)  
Corresponding Authors:  Sen-Lin Yan     E-mail:  senlinyan@163.com

Cite this article: 

Sen-Lin Yan(颜森林) Dynamic characteristics in an external-cavity multi-quantum-well laser 2018 Chin. Phys. B 27 060501

[1] Mork J, Tromborg B and Mark J 1992 IEEE J. Quantum Electron. 28 93
[2] Kirk G and Bernd K 2004 Opt. Commun. 231 383
[3] Jones R J, Spencer P S, Lawrence J and Kane D M 2001 IEE Proc. Optoelectron. 148 7
[4] Yan S L 2009 J. Mod. Opt. 56 539
[5] Sunada S, Harayama T, Arai K, Yoshimura K, Davis P, Tsuzuki K and Uchida S 2011 Opt. Express 19 5713
[6] Wu L and Zhu S Q 2003 Chin. Phys. 12 300
[7] Yan S L 2007 Chin. Phys. 16 3271
[8] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343
[9] Argyris A, Grivas E, Hamacher M, Bogris A and Syvridis D 2010 Opt. Express 18 5188
[10] Houlihan J, Huyet G and Mcinerney J G 2001 Opt. Commun. 199 175
[11] Mandel P, Viktorov E A, Masoller C and Torre M S 2003 Physica A 327 129
[12] Yan S L 2009 Opt. Commun. 282 3558
[13] Sivaprakasam S, Pierce I, Rees P, Spencer P S, Heil K A T, Fischer I, Elsasser W and Gavrielides A 2001 Phys. Rev. Lett. 87 243
[14] Li X F, Pan W, Luo B, Ma D and Deng G 2006 Proc. Inst. Electr. Eng. Optoelectron. 153 67
[15] Wang A B, Wang Y C and He H C 2008 IEEE Photon. Technol. Lett. 20 1633
[16] Ju R and Spencer P S 2005 J. Lightwave Technol. 23 2513
[17] Murakami A and Ohtsubo J 1998 IEEE J. Quantum Electron. 34 1979
[18] Xiang S Y, Pan W, Yan L, Luo B, Zou X, Jiang N and Wen K 2011 Opt. Lett. 36 310
[19] Yan S L 2012 Opt. Laser Technol. 44 83
[20] Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q and Xia G Q 2013 Opt. Express 21 23358
[21] Xiang S, Pan W, Zhang L, Wen A, Shang L, Zhang H and Lin L 2014 Opt. Commun. 324 38
[22] Yan S L 2015 Acta Phys. Sin. 64 240505 (in Chinese)
[23] Liu Q X, Pan W, Zhang L Y, Li N Q and Yan J 2015 Acta Phys. Sin. 64 024209 (in Chinese)
[24] Wang S T, Wu Z M, Wu J G, Zhou L and Xia G Q 2015 Acta Phys. Sin. 64 154205 (in Chinese)
[25] Yan S L 2016 Chin. Phys. B 25 090504
[26] Sunada S, Shinohara S, Fukushima T and Harayama T 2016 Phys. Rev. Lett. 116 203903
[27] Naruse M, Terashima Y, Uchid A and Kim S J 2017www.nature.com/scientificreports/DOI:10.1038/s41598-017-08585-8, pp. 1-10
[28] Wang A B, Wang Y C and Wang J F 2009 Opt. Lett. 34 1144
[29] Wang A B, Yang Y B, Wang B J, Zhang B B, Li L and Wang Y C 2013 Opt. Express 21 8701
[30] Bennett S, Snowden C M and Iezekiel S 1997 IEEE J. Quantum Electron. 33 2076
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[4] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[9] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[10] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[11] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[12] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[13] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[14] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[15] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
No Suggested Reading articles found!