Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 110502    DOI: 10.1088/1674-1056/24/11/110502
GENERAL Prev   Next  

Achieving high bit rate logical stochastic resonance in a bistable system by adjusting parameters

Yang Ding-Xin (杨定新)a, Gu Feng-Shou (谷丰收)b, Feng Guo-Jin (冯国金)b, Yang Yong-Min (杨拥民)a, Andrew Ballb
a College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China;
b Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK
Abstract  The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications.
Keywords:  logical stochastic resonance      high bit rate      logic gate  
Received:  02 June 2015      Revised:  24 July 2015      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51379526).
Corresponding Authors:  Yang Ding-Xin     E-mail:  yangdingxincn@163.com

Cite this article: 

Yang Ding-Xin (杨定新), Gu Feng-Shou (谷丰收), Feng Guo-Jin (冯国金), Yang Yong-Min (杨拥民), Andrew Ball Achieving high bit rate logical stochastic resonance in a bistable system by adjusting parameters 2015 Chin. Phys. B 24 110502

[1] Li J H;2014 Chin. Phys. Lett. 31 030502
[2] Duan W L, Long F and Li C;2014 Physica A 401 52
[3] Wang K K and Liu X B;2014 Chin. Phys. B 23 010502
[4] Murali K, Sinha S, Ditto W L and Bulsara A R;2009 Phys. Rev. Lett. 102 104101
[5] Murali K, Rajamohamed I, Sinha S, Ditto W L and Bulsara A R;2009 Appl. Phys. Lett. 95 194102
[6] Worschech L, Hartmann F, Kim T Y, Höfling S, Kamp M, Forchel A, Ahopelto J, Neri I, Dari A and Gammaitoni L;2010 Appl. Phys. Lett. 96 042112
[7] Gupta A, Sohane A, Kohar V, Murali K and Sinha S;2011 Phys. Rev. E 84 055201
[8] Zamora-Munt J and Masoller C;2010 Opt. Express 18 16418
[9] Singh K P and Sinha S;2011 Phys. Rev. E 83 046219
[10] Guerra D N, Bulsara A R, Ditto W L, Sinha S, Murali K and Mohanty P;2010 Nano Lett. 10 1168
[11] Sinha S, Cruz J M, Buhse T and Parmananda P;2009 EPL Europhys. Lett. 86 60003
[12] Dari A, Kia B, Bulsara A R and Ditto W L;2011 Chaos Interdiscip. J. Nonlinear Sci. 21 047521
[13] Dari A, Kia B, Bulsara A R and Ditto W L;2011 EPL Europhys. Lett. 93 18001
[14] Zhang H, Yang T, Xu W and Xu Y 2014 Nonlinear Dyn. 76 649
[15] Zhang L, Song A G and He J 2010 Phys. Rev. E 82 051106
[16] Zhang L, Song A G and He J;2011 Eur. Phys. J. B 80 147
[17] Storni R, Ando H, Aihara K, Murali K and Sinha S;2012 Phys. Lett. A 376 930
[18] Bulsara A R, Dari A, Ditto W L, Murali K and Sinha S;2010 Chem. Phys. 375 424
[19] Kohar V, Murali K and Sinha S;2014 Commun. Nonlinear Sci. Numer. Simul. 19 2866
[20] Wang N and Song A G;2014 Phys. Lett. A 378 1588
[21] Wang N and Song A G;2015 Neurocomputing 155 80
[22] Wu H, Jiang H and Hou Z;2012 Chin. J. Chem. Phys. 25 70
[23] Yang D X, Hu Z and Yang Y M 2012 Acta Phys. Sin. 61 080501 (in Chinese)
[24] McNamara B and Wiesenfeld K;1989 Phys. Rev. A 39 4854
[1] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[2] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[3] Theoretical design of thermal spin molecular logic gates by using a combinational molecular junction
Yi Guo(郭逸), Peng Zhao(赵朋), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(4): 047202.
[4] Time-varying coupling-induced logical stochastic resonance in a periodically driven coupled bistable system
Yuangen Yao(姚元根). Chin. Phys. B, 2021, 30(6): 060503.
[5] Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes
Zi-Qun Wang(王子群), Fei Tang(唐菲), Mi-Mi Dong(董密密), Ming-Lang Wang(王明郎), Gui-Chao Hu(胡贵超), Jian-Cai Leng(冷建材), Chuan-Kui Wang(王传奎), Guang-Ping Zhang(张广平). Chin. Phys. B, 2020, 29(6): 067202.
[6] Rydberg quantum controlled-phase gate with one control and multiple target qubits
S L Su(苏石磊). Chin. Phys. B, 2018, 27(11): 110304.
[7] Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection
Dongzhou Zhong(钟东洲), Wei Luo(罗伟), Geliang Xu(许葛亮). Chin. Phys. B, 2016, 25(9): 094202.
[8] High contrast all-optical diode based on direction-dependent optical bistability within asymmetric ring cavity
Xiu-Wen Xia(夏秀文), Xin-Qin Zhang(张新琴), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2016, 25(8): 084211.
[9] Quantum logic operations on two distant atoms trapped in two optical-fibre-connected cavities
Zhang Ying-Qiao(张英俏), Zhang Shou(张寿), Yeon Kyu-Hwang, and Yu Seong-Cho . Chin. Phys. B, 2011, 20(12): 120310.
[10] Scheme for implementing quantum logic gates for two atoms trapped in different cavities
Lin Li-Hua(林丽华). Chin. Phys. B, 2009, 18(5): 1867-1871.
[11] Scheme for realizing quantum computation and quantum information transfer with superconducting qubits coupling to a 1D transmission line resonator
Shi Zhen-Gang(施振刚), Chen Xiong-Wen(谌雄文), Zhu Xi-Xiang(朱喜香), and Song Ke-Hui(宋克慧). Chin. Phys. B, 2009, 18(3): 910-914.
[12] All-optical XNOR and AND gates simultaneously realized in a single semiconductor optical amplifier with improved dynamics
Li Pei-Li(李培丽), Huang De-Xiu(黄德修), Zhang Xin-Liang(张新亮), and Zhu Guang-Xi(朱光喜). Chin. Phys. B, 2007, 16(12): 3719-3727.
[13] Quantum logic gates operation using SQUID qubits in bimodal cavity
Song Ke-Hui (宋克慧). Chin. Phys. B, 2006, 15(2): 286-291.
[14] Scheme for teleporting an unknown atomic state to any node in a quantum communication network
Song Ke-Hui (宋克慧), Zhang Wei-Jun (张为俊), Guo Guang-Can (郭光灿). Chin. Phys. B, 2002, 11(3): 218-221.
No Suggested Reading articles found!