INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Synthesis of strong SiV photoluminescent diamond particles on silica optical fiber by chemical vapor deposition |
Zongchun Yang(仰宗春)1, Yingshuang Mei(梅盈爽)1, Chengke Chen(陈成克)1, Yinlan Ruan(阮银兰)2, Xiaojun Hu(胡晓君)1 |
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China; 2 ARC Centre of Excellence in Nanoscale Biophotonics, Institute of Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia |
|
|
Abstract The separated silicon-vacancy (SiV) photoluminescent diamond particles were synthesized on a silica optical fiber by hot filament chemical vapor deposition (HFCVD). The effects of the pre-treated method and chamber pressure on the microstructure and photoluminescence of the diamond particles were investigated. The results show that the diamond particles are homogeneously distributed on the surface of the optical fiber. With the chamber pressure increasing from 1.6 kPa to 3.5 kPa, the shape of the particles transforms from flake to circle, while the diamond particles cannot be deposited on the fiber with the pressure further increased to 4.5 kPa. The samples synthesized under 2.5 kPa chamber pressure are composed of diamond particles with size around 200-400 nm, exhibiting stronger SiV photoluminescence with the width of around 6 nm.
|
Received: 09 September 2017
Revised: 12 December 2017
Accepted manuscript online:
|
PACS:
|
81.05.uj
|
(Diamond/nanocarbon composites)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
51.70.+f
|
(Optical and dielectric properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50972129 and 50602039), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), European Union's Horizon 2020 Research and Innovation Staff Exchange (RISE) Scheme (Grant No. 734578), and the One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021). |
Corresponding Authors:
Xiaojun Hu
E-mail: huxj@zjut.edu.cn
|
Cite this article:
Zongchun Yang(仰宗春), Yingshuang Mei(梅盈爽), Chengke Chen(陈成克), Yinlan Ruan(阮银兰), Xiaojun Hu(胡晓君) Synthesis of strong SiV photoluminescent diamond particles on silica optical fiber by chemical vapor deposition 2018 Chin. Phys. B 27 038101
|
[1] |
Kurtsiefer C, Mayer S, Zarda P and Weinfurter H 2000 Phys. Rev. Lett. 85 290
|
[2] |
Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
|
[3] |
Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen N, Sauvan C, Lalanne P and Gérard J M 2010 Nat. Photon. 4 174
|
[4] |
Dutt M V G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Science 316 1312
|
[5] |
Jiang Q, Li W, Tang C, Chang Y, Hao T, Pan X, Ye H, Junjie Li and Gu C 2016 Chin. Phys. B 25 118105
|
[6] |
Wu E, Rabeau J R, Roger G, Treussart F, Zeng H, Grangier P, Prawer S and Roch J F 2007 New J. Phys. 9 434
|
[7] |
Aharonovich I, Castelletto S, Johnson B C, McCallum J C, Simpson D A, Greentree A D and Prawer S 2010 Phys. Rev. B 81
|
[8] |
Babinec T M, Hausmann B J M, Khan M, Zhang Y, Maze J R, Hemmer P R and Lončar M 2010 Nat. Nanotechnol. 5 195
|
[9] |
Mei Y S, Fan D, Lu S H, Shen Y G and Hu X J 2016 J. Appl. Phys. 120 225107
|
[10] |
Hu X J and Li N 2013 Chin. Phys. Lett. 30 088102
|
[11] |
Schröder T, Schell A W, Kewes G, Aichele T and Benson O 2011 Nano Lett. 11 198
|
[12] |
Ruan Y, Gibson B C, Lau D W M, Greentree A D, Ji H, Ebendorff-Heidepriem H, Johnson B C, Ohshima T and Monro T M 2015 Sci. Rep. 5 11486
|
[13] |
Rabeau J R, Huntington S T, Greentree A D and Prawer S 2005 Appl. Phys. Lett. 86 134104
|
[14] |
Xu Y, Cui L, Li X, Guo C, Li Y, Xu Z, Wang L and Fang W 2016 Chin. Phys. B 25 124205
|
[15] |
Qin H, Niu Y, Meng R, Lin X, Lai R, Fang W and Peng X 2014 J. Am. Chem. Soc. 136 179
|
[16] |
Hepp C, Müller T, Waselowski V, Becker J N, Pingault B, Sternschulte H, Steinmüller-Nethl D, Gali A, Maze J R, Atatüre M and Becher C 2014 Phys. Rev. Lett. 112
|
[17] |
Neu E, Steinmetz D, Riedrich-Möller J, Gsell S, Fischer M, Schreck M and Becher C 2011 New J. Phys. 13 025012
|
[18] |
Kunuku S, Chen Y C, Yeh C J, Chang W H, Manoharan D, Leou K C and Nan L 2016 Mater. Res. Express 3 106205
|
[19] |
Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211
|
[20] |
Lifshitz Y, Lee C H, Wu Y, Zhang W J, Bello I and Lee S T 2006 Appl. Phys. Lett. 88 243114
|
[21] |
Lee H J, Jeon H and Lee W S 2012 J. Phys. Chem. C 116 9180
|
[22] |
Bogdanowicz R, Sobaszek M, Ryl J, Gnyba M, Ficek M, Goluński Ł, Bock W J, Śmietana M and Darowicki K 2015 Diam. Relat. Mater. 55 52
|
[23] |
Correia M R, Monteiro T, Pereira E and Costa L C 1998 J. Appl. Phys. 84 2207
|
[24] |
Huang K, Hu X J, Xu H, Shen Y G and Khomich A 2014 Appl. Surf. Sci. 317 11
|
[25] |
Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
|
[26] |
Hu X J, Chen C K and Lu S H 2016 Carbon 98 671
|
[27] |
Xu H, Ye H T, Coathup D, Mitrovic I Z, Weerakkody A D and Hu X J 2017 Appl. Phys. Lett. 110 033102
|
[28] |
Tamor M A, Haire J A, Wu C H and Hass K C 1989 Appl. Phys. Lett. 54 123
|
[29] |
Dwivedi N, Kumar S, Rawal I and Malik H K 2014 Appl. Surf. Sci. 300 141
|
[30] |
Liu X, Wang G, Song X, Feng F, Zhu W, Lou L, Wang J, Wang H and Bao P 2012 Appl. Phys. Lett. 101 233112
|
[31] |
Connell L L, Fleming J W, Chu H N, Vestyck D J Jr, Jensen E and Butler J E 1995 J. Appl. Phys. 78 3622
|
[32] |
You M S, Hong F C N, Jeng Y R and Huang S M 2009 Diam. Relat. Mater. 18 155
|
[33] |
Kobashi K, Nishimura K, Kawate Y and Horiuchi T 1988 Phys. Rev. B 38 4067
|
[34] |
Sharda T, Misra D S, Avasthi D K and Mehta G K 1996 Solid State Commun. 98 879
|
[35] |
Iakoubovskii K, Adriaenssens G J and Vohra Y K 2000 J. Phys.:Condens. Matter 12 L519
|
[36] |
Aharonovich I and Neu E 2014 Adv. Opt. Mater. 2 911
|
[37] |
Das D and Singh R N 2007 Int. Mater. Rev. 52 29
|
[38] |
Liang X, Wang L, Zhu H and Yang D 2007 Surf. Coat. Technol. 202 261
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|