Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 038101    DOI: 10.1088/1674-1056/27/3/038101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synthesis of strong SiV photoluminescent diamond particles on silica optical fiber by chemical vapor deposition

Zongchun Yang(仰宗春)1, Yingshuang Mei(梅盈爽)1, Chengke Chen(陈成克)1, Yinlan Ruan(阮银兰)2, Xiaojun Hu(胡晓君)1
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
2 ARC Centre of Excellence in Nanoscale Biophotonics, Institute of Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia
Abstract  The separated silicon-vacancy (SiV) photoluminescent diamond particles were synthesized on a silica optical fiber by hot filament chemical vapor deposition (HFCVD). The effects of the pre-treated method and chamber pressure on the microstructure and photoluminescence of the diamond particles were investigated. The results show that the diamond particles are homogeneously distributed on the surface of the optical fiber. With the chamber pressure increasing from 1.6 kPa to 3.5 kPa, the shape of the particles transforms from flake to circle, while the diamond particles cannot be deposited on the fiber with the pressure further increased to 4.5 kPa. The samples synthesized under 2.5 kPa chamber pressure are composed of diamond particles with size around 200-400 nm, exhibiting stronger SiV photoluminescence with the width of around 6 nm.
Keywords:  diamond      silicon vacancy      photoluminescence      optical fiber  
Received:  09 September 2017      Revised:  12 December 2017      Accepted manuscript online: 
PACS:  81.05.uj (Diamond/nanocarbon composites)  
  78.55.-m (Photoluminescence, properties and materials)  
  51.70.+f (Optical and dielectric properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50972129 and 50602039), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), European Union's Horizon 2020 Research and Innovation Staff Exchange (RISE) Scheme (Grant No. 734578), and the One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021).
Corresponding Authors:  Xiaojun Hu     E-mail:  huxj@zjut.edu.cn

Cite this article: 

Zongchun Yang(仰宗春), Yingshuang Mei(梅盈爽), Chengke Chen(陈成克), Yinlan Ruan(阮银兰), Xiaojun Hu(胡晓君) Synthesis of strong SiV photoluminescent diamond particles on silica optical fiber by chemical vapor deposition 2018 Chin. Phys. B 27 038101

[1] Kurtsiefer C, Mayer S, Zarda P and Weinfurter H 2000 Phys. Rev. Lett. 85 290
[2] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[3] Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen N, Sauvan C, Lalanne P and Gérard J M 2010 Nat. Photon. 4 174
[4] Dutt M V G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Science 316 1312
[5] Jiang Q, Li W, Tang C, Chang Y, Hao T, Pan X, Ye H, Junjie Li and Gu C 2016 Chin. Phys. B 25 118105
[6] Wu E, Rabeau J R, Roger G, Treussart F, Zeng H, Grangier P, Prawer S and Roch J F 2007 New J. Phys. 9 434
[7] Aharonovich I, Castelletto S, Johnson B C, McCallum J C, Simpson D A, Greentree A D and Prawer S 2010 Phys. Rev. B 81
[8] Babinec T M, Hausmann B J M, Khan M, Zhang Y, Maze J R, Hemmer P R and Lončar M 2010 Nat. Nanotechnol. 5 195
[9] Mei Y S, Fan D, Lu S H, Shen Y G and Hu X J 2016 J. Appl. Phys. 120 225107
[10] Hu X J and Li N 2013 Chin. Phys. Lett. 30 088102
[11] Schröder T, Schell A W, Kewes G, Aichele T and Benson O 2011 Nano Lett. 11 198
[12] Ruan Y, Gibson B C, Lau D W M, Greentree A D, Ji H, Ebendorff-Heidepriem H, Johnson B C, Ohshima T and Monro T M 2015 Sci. Rep. 5 11486
[13] Rabeau J R, Huntington S T, Greentree A D and Prawer S 2005 Appl. Phys. Lett. 86 134104
[14] Xu Y, Cui L, Li X, Guo C, Li Y, Xu Z, Wang L and Fang W 2016 Chin. Phys. B 25 124205
[15] Qin H, Niu Y, Meng R, Lin X, Lai R, Fang W and Peng X 2014 J. Am. Chem. Soc. 136 179
[16] Hepp C, Müller T, Waselowski V, Becker J N, Pingault B, Sternschulte H, Steinmüller-Nethl D, Gali A, Maze J R, Atatüre M and Becher C 2014 Phys. Rev. Lett. 112
[17] Neu E, Steinmetz D, Riedrich-Möller J, Gsell S, Fischer M, Schreck M and Becher C 2011 New J. Phys. 13 025012
[18] Kunuku S, Chen Y C, Yeh C J, Chang W H, Manoharan D, Leou K C and Nan L 2016 Mater. Res. Express 3 106205
[19] Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211
[20] Lifshitz Y, Lee C H, Wu Y, Zhang W J, Bello I and Lee S T 2006 Appl. Phys. Lett. 88 243114
[21] Lee H J, Jeon H and Lee W S 2012 J. Phys. Chem. C 116 9180
[22] Bogdanowicz R, Sobaszek M, Ryl J, Gnyba M, Ficek M, Goluński Ł, Bock W J, Śmietana M and Darowicki K 2015 Diam. Relat. Mater. 55 52
[23] Correia M R, Monteiro T, Pereira E and Costa L C 1998 J. Appl. Phys. 84 2207
[24] Huang K, Hu X J, Xu H, Shen Y G and Khomich A 2014 Appl. Surf. Sci. 317 11
[25] Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
[26] Hu X J, Chen C K and Lu S H 2016 Carbon 98 671
[27] Xu H, Ye H T, Coathup D, Mitrovic I Z, Weerakkody A D and Hu X J 2017 Appl. Phys. Lett. 110 033102
[28] Tamor M A, Haire J A, Wu C H and Hass K C 1989 Appl. Phys. Lett. 54 123
[29] Dwivedi N, Kumar S, Rawal I and Malik H K 2014 Appl. Surf. Sci. 300 141
[30] Liu X, Wang G, Song X, Feng F, Zhu W, Lou L, Wang J, Wang H and Bao P 2012 Appl. Phys. Lett. 101 233112
[31] Connell L L, Fleming J W, Chu H N, Vestyck D J Jr, Jensen E and Butler J E 1995 J. Appl. Phys. 78 3622
[32] You M S, Hong F C N, Jeng Y R and Huang S M 2009 Diam. Relat. Mater. 18 155
[33] Kobashi K, Nishimura K, Kawate Y and Horiuchi T 1988 Phys. Rev. B 38 4067
[34] Sharda T, Misra D S, Avasthi D K and Mehta G K 1996 Solid State Commun. 98 879
[35] Iakoubovskii K, Adriaenssens G J and Vohra Y K 2000 J. Phys.:Condens. Matter 12 L519
[36] Aharonovich I and Neu E 2014 Adv. Opt. Mater. 2 911
[37] Das D and Singh R N 2007 Int. Mater. Rev. 52 29
[38] Liang X, Wang L, Zhu H and Yang D 2007 Surf. Coat. Technol. 202 261
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[5] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[6] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[7] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[8] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[9] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[10] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
[11] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[12] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[13] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[14] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[15] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
No Suggested Reading articles found!