Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100502    DOI: 10.1088/1674-1056/27/10/100502
GENERAL Prev   Next  

Phase order in one-dimensional piecewise linear discontinuous map

Ru-Hai Du(杜如海)1,2, Sheng-Jun Wang(王圣军)1,2, Tao Jin(金涛)1,2, Shi-Xian Qu(屈世显)1,2
1 Institute of Theoretical & Computational Physics, Shaanxi Normal University, Xi'an 710119, China;
2 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
Abstract  

The phase order in a one-dimensional (1D) piecewise linear discontinuous map is investigated. The striking feature is that the phase order may be ordered or disordered in multi-band chaotic regimes, in contrast to the ordered phase in continuous systems. We carried out an analysis to illuminate the underlying mechanism for the emergence of the disordered phase in multi-band chaotic regimes, and proved that the phase order is sensitive to the density distribution of the trajectories of the attractors. The scaling behavior of the net direction phase at a transition point is observed. The analytical proof of this scaling relation is obtained. Both the numerical and analytical results show that the exponent is 1, which is controlled by the feature of the map independent on whether the system is continuous or discontinuous. It extends the universality of the scaling behavior to systems with discontinuity. The result in this work is important to understanding the property of chaotic motion in discontinuous systems.

Keywords:  chaos      piecewise discontinuous map      direction phase  
Received:  02 May 2018      Revised:  17 July 2018      Accepted manuscript online: 
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11645005) and the Interdisciplinary Incubation Project of Shaanxi Normal University (Grant No. 5).

Corresponding Authors:  Shi-Xian Qu     E-mail:  sxqu@snnu.edu.cn

Cite this article: 

Ru-Hai Du(杜如海), Sheng-Jun Wang(王圣军), Tao Jin(金涛), Shi-Xian Qu(屈世显) Phase order in one-dimensional piecewise linear discontinuous map 2018 Chin. Phys. B 27 100502

[1] Ott E 2006 Chaos in Dynamical Systems (Beijing:Beijing World Publishing Corporation)
[2] Fečkan M 2011 Bifurcation and Chaos in Discontinuous and Continuous Systems (Bejing:Higher Education Press)
[3] Strogatz S H 2015 Nonlinear Dynamics and Chaos:With Applications to Physics, Biology, Chemistry, and Engineering (Westview Press)
[4] Grebogi C, Ott E and Yorke J A 1982 Phys. Rev. Lett. 48 1507
[5] Wang W, Liu Z H and Hu B B 2000 Phys. Rev. Lett. 84 2610
[6] Wang X and Chen G R 2013 Nonlinear Dyn. 71 429
[7] Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N V, Leonov G A and Prasad A 2016 Phys. Rep. 637 1
[8] Han Q, Liu C X, Sun L and Zhu D R 2013 Chin. Phys. B 22 020502
[9] Yang K L, Chen H Y, Du W W, Jin T and Qu S X 2014 Chin. Phys. B 23 070508
[10] Lei Y M and Zhang H X 2017 Chin. Phys. B 26 30502
[11] Shrimali M D and Ramaswamy R 2002 Phys. Lett. A 295 273
[12] Park K, Lai Y C, Liu Z H and Nachman A 2004 Phys. Lett. A 326 391
[13] Liu Z H, Hu B B and Iasemidis L D 2005 Europhys. Lett. 71 200
[14] Jalan S and Amritkar R E 2003 Phys. Rev. Lett. 90 014101
[15] Tucci K, Cosenza M G and Llamoza O A 2003 Phys. Rev. E 68 027202
[16] Zhou Y Z, Zhou J and Liu Z H 2008 Europhys. Lett. 84 60001
[17] Zhou Y Z, Zhou J, Wang X G, Guan S G, Lai C H and Liu Z H 2010 Europhys. Lett. 90 30005
[18] Liang X M, Lü H P and Liu Z H 2008 Chin. Phys. Lett. 25 409
[19] Yang Y J, Du R H, Wang S J, Jin T and Qu S X 2015 Chin. Phys. Lett. 32 010502
[20] Asahara H, Izumi Y, Tone Y, Matsumoto H and Kousaka T 2014 Circ. Syst. Signal. Pr. 33 2695
[21] Jain P and Banerjee S 2003 Int. J. Bifur. Chaos 13 3341
[22] Avrutin V, Schanz M and Banerjee S 2006 Nonlinearity 19 1875
[23] Avrutin V, Gardini L, Schanz M and Sushko I 2014 Int. J. Bifur. Chaos 24 1440012
[24] He D R, Wang B H, Bauer M, Habip S, Krueger U, Martienssen W and Christiansen B 1994 Physica D 79 335
[25] Qu S X, Wu S W and He D R 1998 Phys. Rev. E 57 402
[26] Qu S X, Lu Y Z, Zhang L and He D R 2008 Chin. Phys. B 17 4418
[27] Gardini L, Sushko I and Naimzada A K 2008 J. Econ. Theor. 143 541
[28] Colombo A, Bernardo M D, Hogan S J and Jeffrey M R 2012 Physica D 241 1845
[29] Avrutin V, Sushko I and Gardini L 2013 Math. Comput. Simul. 95 126
[30] Castro J, Alvarez J, Verduzco F and Palomares-Ruiz J E 2017 Chaos, Solitons, and Fractals 105 8
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!