Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010203    DOI: 10.1088/1674-1056/27/1/010203
GENERAL Prev   Next  

A novel stable value iteration-based approximate dynamic programming algorithm for discrete-time nonlinear systems

Yan-Hua Qu(曲延华), An-Na Wang(王安娜), Sheng Lin(林盛)
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Abstract  The convergence and stability of a value-iteration-based adaptive dynamic programming (ADP) algorithm are considered for discrete-time nonlinear systems accompanied by a discounted quadric performance index. More importantly than sufficing to achieve a good approximate structure, the iterative feedback control law must guarantee the closed-loop stability. Specifically, it is firstly proved that the iterative value function sequence will precisely converge to the optimum. Secondly, the necessary and sufficient condition of the optimal value function serving as a Lyapunov function is investigated. We prove that for the case of infinite horizon, there exists a finite horizon length of which the iterative feedback control law will provide stability, and this increases the practicability of the proposed value iteration algorithm. Neural networks (NNs) are employed to approximate the value functions and the optimal feedback control laws, and the approach allows the implementation of the algorithm without knowing the internal dynamics of the system. Finally, a simulation example is employed to demonstrate the effectiveness of the developed optimal control method.
Keywords:  adaptive dynamic programming (ADP)      convergence      stability      discounted quadric performance index  
Received:  04 July 2017      Revised:  11 October 2017      Accepted manuscript online: 
PACS:  02.60.Gf (Algorithms for functional approximation)  
  02.30.Jr (Partial differential equations)  
  02.30.Yy (Control theory)  
Corresponding Authors:  Yan-Hua Qu     E-mail:  quyanhuawang@sina.com

Cite this article: 

Yan-Hua Qu(曲延华), An-Na Wang(王安娜), Sheng Lin(林盛) A novel stable value iteration-based approximate dynamic programming algorithm for discrete-time nonlinear systems 2018 Chin. Phys. B 27 010203

[1] Bellman R E 1957 Dynamic Programming (Princeton: Princeton University Press)
[2] Zhang H G, Liu D R, Luo Y H and Wang D 2013 Adaptive Dynamic Programming for Control-algorithms and Stability (London: SpringerVerlag)
[3] Werbos P J 1992 Approximate Dynamic Programming for Real-time Control and Neural Modeling, Handbook of Intelligent Control (New York: Van Nostrand Reinhold)
[4] Bertsekas D P and Tsitsiklis J N 1995 Proceedings of the 34th IEEE Conference on IEEE, 1995, pp. 560-564
[5] Prokhorov D V and Wunsch D C 1997 IEEE Trans. Neural Netw. 8 997
[6] Wang F Y, Zhang H G and Liu D R 2009 IEEE Computational Intelligence Magazine 4 39
[7] Doya K 2000 Neural Computation 12 219
[8] Liang H J, Li H Y, Yu Z D, Li P and Wang W 2017 IET Control Theory & Applications 11 1928
[9] Hanselmann T, Noakes L and Zaknich A 2007 IEEE Trans on Neural Networks 18 631
[10] Wei Q L, Shi G, Song R Z and Liu Y 2017 IEEE Trans. Indus. Elect. 64 5468
[11] Howard R 1960 Dynamic Programming and Markov Processes (Cambridge: MIT Press)
[12] Song R Z, Xiao W D, Sun C Y and Wei Q L 2015 Chin. Phys. B 22090502
[13] Wei Q L, Lewis F L, Shi G and Song R Z 2017 IEEE Trans. Indus. Elect. 64 9527
[14] Leake R J and Liu R W 1967 J. SIAM Control 5 54
[15] Song R Z and Wei Q L 2017 Chin. Phys. B 26 030505
[16] Wei Q L, Song R Z, S Q Y and Xiao W D 2015 Chin. Phys. B 24090504
[17] Beard R, Saridis G and Wen J 1997 Automatica 33 2158
[18] Wei Q L, Liu D R and Xu Y C 2015 Chin. Phys. B 24 030502
[19] Song R Z, Xiao W D and Wei Q L 2014 Chin. Phys. B 23 050504
[20] Wei Q L, Liu D R, Lewis F L, Liu Y and Zhang J 2017 IEEE Trans. Indus. Elect. 64 4110
[21] Zhang Y, Zhang Z, Qian H and Hu G 2017 Chin. Phys. B 26 100508
[22] Wei Q L, Liu D R, and Lin H Q 2016 IEEE Trans. Cybernetics 46 840
[23] Hong Y Y, Qiang Z and Qi J Z 2017 Chin. Phys. B 26 100506
[24] Wei Q L, Lewis F L, Sun Q Y, Yan P F and Song R Z 2017 IEEE Trans. Cybernetics 47 1224
[25] Abu-Khalaf M and Lewis F L 2005 Automatica 41 779
[26] Zhang H G, Wei Q L and Liu D R 2011 Automatica 47 207
[27] Vrabie D and Lewis F L 2009 Proceedings of International Joint Conference on Neural Networks, Atlanta, pp. 3224-3231
[28] Lewis F L and Vamvoudakis K G 2011 IEEE Trans. Syst., Man, Cybern. B 41 14
[29] Song R Z, Lewis F L and Wei Q L Vrabie D and Lewis F L 2017 IEEE Trans. Neural Netw. Learn. Syst. 28 704
[30] Zhang H G, Luo Y H and Liu D R 2009 IEEE Trans. Neural Netw. 201490
[31] Zhang H G, Wei Q L and Luo Y H 2008 IEEE Trans. Syst., Man, Cybern. B 38 937
[32] Al-Tamimi A, Lewis F L and Abu-Khalaf M 2008 IEEE Trans. Syst., Man, Cybern. B 38 943
[33] Li H L, Liu D R and Wang D 2012 Proceedings of the 31st Chinese Control Conference, July 25-27, 2012, Hefei, China, p. 2932
[34] Wei Q L and Liu D R Vrabie D and Lewis F L 2012 WCCI 2012 IEEE World Congress on Computational Intelligence, June, 10-15, 2012, Brisbane, Australia
[35] Wang D, Liu D R, Wei Q L, Zhao D B and Jin N 2012 Automatica 481825
[36] Primbs J A and Nevistic V 2000 Automatica 36 965
[37] Lewis F L and Vrabie D 2009 Proceedings of the 7th Asian Control Conference, Hong Kong, China, August 27-29, 2009
[38] Rantzer A IEE Proc. Control Theory Appl. 153 567
[39] Lincoln B and Rantzer A Vrabie D and Lewis F L 2006 IEEE Trans. Autom. Con. 51 1249
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[5] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[10] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[11] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[12] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[13] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
No Suggested Reading articles found!