Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010204    DOI: 10.1088/1674-1056/27/1/010204
GENERAL Prev   Next  

Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux

Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明)
Department of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics(Ministry of Education), Beihang University, Beijing 100191, China
Abstract  The quantum phase of hard-core bosons in Creutz ladder with zero flux is studied. For a specific regime of the parameters (tx=tp, ty<0), the exact ground-state is found analytically, which is a dimerized insulator with one electron bound in each rung of the ladder. For the case tx,ty,tp>0, the system is exactly studied using quantum Monte Carlo (QMC) method without a sign problem. It is found that the system is a Mott insulator for small tp and a quantum phase transition to a superfluid phase is driven by increasing tp. The critical tpc is determined precisely by a scaling analysis. Since it is possible that the Creutz ladder is realized experimentally, the theoretical results are interesting to the cold-atom experiments.
Keywords:  quantum Monte Carlo method      Creutz ladder      Mott insulator  
Received:  13 April 2017      Revised:  12 September 2017      Accepted manuscript online: 
PACS:  02.70.Ss (Quantum Monte Carlo methods)  
  05.30.Rt (Quantum phase transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274032, 11774019, 51472016, and 51672018).
Corresponding Authors:  Huaiming Guo     E-mail:  hmguo@buaa.edu.cn

Cite this article: 

Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明) Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux 2018 Chin. Phys. B 27 010204

[1] Creutz M 1999 Phys. Rev. Lett. 83 2636
[2] Creutz M 2001 Rev. Mod. Phys. 73 119
[3] Schnyder A P, Ryu S, Furusaki A and Ludwig A W 2008 Phys. Rev. B 78 195125
[4] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[5] Kōnig M, Wiedmann S, Brüe C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[6] Guo H M, Feng S P and Shen S Q 2011 Phys. Rev. B 83 045114
[7] Guo H M 2010 Phys. Rev. B 82 115122
[8] Guo H M, Lin Y and Shen S Q 2014 Phys. Rev. B 90 085413
[9] Mondragon-Shem I, Hughes T L, Song J and Prodan E 2014 Phys. Rev. Lett. 113 046802
[10] Song J and Prodan E 2014 Phys. Rev. B 89 224203
[11] Takayoshi S, Katsura H, Watanabe N and Aoki H 2013 Phys. Rev. A 88 063613
[12] Tovmasyan M, van Nieuwenburg E P and Huber S D 2013 Phys. Rev. B 88 220510
[13] Tovmasyan M, Peotta S, Torma P and Huber S D 2016 Phys. Rev. B 94 245149
[14] Sticlet D, Seabra L, Pollmann F and Cayssol J 2014 Phys. Rev. B 89 115430
[15] Jünemann J, Piga A, Ran S J, Lewenstein M, Rizzi M and Bermudez A 2016 Phys. Rev. X 7 031057
[16] Li X, Zhao E and Liu W V 2013 Nat. Commun. 4 1523
[17] Crepin F, Laflorencie N, Roux G and Simon P 2011 Phys. Rev. B 84 054517
[18] Ying T, Batrouni G G, Tang G X, Sun X D and Scalettar R T 2014 Phys. Rev. B 89 195128
[19] Kolley F, Piraud M, McCulloch I P, Schollwock U and Heidrich-Meisner F 2015 New J. Phys. 17 092001
[20] Piraud M, Heidrich-Meisner F, McCulloch I P, Greschner S, Vekua T and Schollwoeck U 2015 Phys. Rev. B 91 140406
[21] Syljuosen O F and Sandvik A W 2002 Phys. Rev. E 66 046701
[22] Bauer B, Carr L D, Evertz H G, et al. 2011 J. Stat. Mech.-Theory and Experiment 05 P05001
[23] Guo H M 2016 Sci. China-Phys. Mech. 59 637401
[24] Guo H M and Chen S 2015 Phys. Rev. B 91 041402
[25] Chen K and Deng Y J 2015 Acta Phys. Sin. 64 180201 (in Chinese)
[26] Li M R, Zhou G, Chu Z, Dai X H, Wu H J and Fan R Y 2013 Acta Phys. Sin. 62 156101 (in Chinese)
[27] L J B and Xu Y 2012 Acta Phys. Sin. 61 110207 (in Chinese)
[28] Han R Q, Liu X Y and Du G 2006 Chin. Phys. B 15 177
[29] Liu Z X, Liu P, Liu Y and Wen S H 2004 Chin. Phys. B 13 229
[1] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[2] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[3] Topological properties of non-Hermitian Creutz ladders
Hui-Qiang Liang(梁辉强) and Linhu Li(李林虎). Chin. Phys. B, 2022, 31(1): 010310.
[4] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[5] Fast impurity solver for dynamical mean field theory based on second order perturbation around the atomic limit
Zhuang Jia-Ning(庄嘉宁), Liu Qing-Mei(刘青梅), Fang Zhong(方忠), and Dai Xi(戴希). Chin. Phys. B, 2010, 19(8): 087104.
[6] Interface dipole induced by asymmetric exchange effect in Mott-insulator/Mott-insulator heterojunction
Hao Lei (郝 雷), Wang Jun(汪 军). Chin. Phys. B, 2008, 17(11): 4305-4311.
No Suggested Reading articles found!