INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Horizontal InAs nanowire transistors grown on patterned silicon-on-insulator substrate |
Wang Zhang(张望)1,2, Wei-Hua Han(韩伟华)1,2, Xiao-Song Zhao(赵晓松)1,2, Qi-Feng Lv(吕奇峰)1,2, Xiang-Hai Ji(季祥海)4, Tao Yang(杨涛)4, Fu-Hua Yang(杨富华)1,2,3 |
1 Engineering Research Center for Semiconductor Integrated Technology, Beijing Engineering Center of Semiconductor Micro-Nano Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
4 Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract High-density horizontal InAs nanowire transistors are fabricated on the interdigital silicon-on-insulator substrate. Hexagonal InAs nanowires are uniformly grown between face-to-face (111) vertical sidewalls of neighboring Si fingers by metal-organic chemical vapor deposition. The density of InAs nanowires is high up to 32 per group of silicon fingers, namely an average of 4 nanowires per micrometer. The electrical characteristics with a higher on/off current ratio of 2×105 are obtained at room temperature. The silicon-based horizontal InAs nanowire transistors are very promising for future high-performance circuits.
|
Received: 19 January 2017
Revised: 21 April 2017
Accepted manuscript online:
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.07.Gf
|
(Nanowires)
|
|
81.16.Dn
|
(Self-assembly)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA02005003) and the National Natural Science Foundation of China (Grant Nos. 61376096 and 61327813). |
Corresponding Authors:
Wei-Hua Han, Tao Yang, Fu-Hua Yang
E-mail: weihua@semi.ac.cn;tyang@semi.ac.cn;fhyang@semi.ac.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Wang Zhang(张望), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Qi-Feng Lv(吕奇峰), Xiang-Hai Ji(季祥海), Tao Yang(杨涛), Fu-Hua Yang(杨富华) Horizontal InAs nanowire transistors grown on patterned silicon-on-insulator substrate 2017 Chin. Phys. B 26 088101
|
[1] |
Fang S F, Adomi K, Iyer S, Morkoc H, Zabel H, Choi C and Otsuka N 1990 J. Appl. Phys. 68 R31
|
[2] |
Ertekin E, Greaney P A, Chrzan D C and Sands T D 2005 J. Appl. Phys. 97 114325
|
[3] |
Tan H, Fan C, La L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L and Pan A L 2016 Nano-Micro Lett. 8 29
|
[4] |
Dey A W, Borg B M, Ganjipour B, Ek M, Dick K A, Lind E, Thelander C and Wernersson L E 2013 IEEE Electron Dev. Lett. 34 311
|
[5] |
Das Kanungo P, Schmid H, Bjork M T, Gignac M L, Breslin C, Bruley J, Bessire C D and Riel H 2013 Nanotechnology 24 225304
|
[6] |
Schmid H, Borg M, Moselund K, Gignac L, Breslin C M, Bruley J, Cutaia D and Riel H 2015 Appl. Phys. Lett. 106 5
|
[7] |
Rieger T, Rosenbach D, Vakulov D, Heedt S, Schäpers T, Grützmacher D and Lepsa M I 2016 Nano Lett. 16 1933
|
[8] |
Tomioka K and Fukui T 2011 Appl. Phys. Lett. 98 083114
|
[9] |
Yi S S, Girolami G, Amano J, Islam M S, Sharma S, Kamins T I and Kimukin I 2006 Appl. Phys. Lett. 89 133121
|
[10] |
Shin J C, Choi K J, Kim D Y, Choi W J and Li X L 2012 Crystal Growth and Design 12 2994
|
[11] |
Wang X, Du W, Yang X, Zhang X and Yang T 2015 J. Crystal Growth 426 287
|
[12] |
Dimitriadis C A 2000 J. Appl. Phys. 88 3624
|
[13] |
Konar A, Mathew J, Nayak K, Bajaj M, Pandey R K, Dhara S, Murali K V R M and Deshmukh M M 2014 Nano Lett. 15 1684
|
[14] |
Memišević E, Svensson J, Hellenbrand M, Lind E and Wernersson L E 2016 IEEE Electron Dev. Lett. 27 549
|
[15] |
Li Q, Huang S Y, Pan D, Wang J Y, Zhao J H and Xu H Q 2014 Appl. Phys. Lett. 105 113106
|
[16] |
Burke A M, Carrad D J, Gluschke J G, Storm K, Svensson S F, Linke H, Samuelson L and Micolich A P 2015 Nano Lett. 15 2836
|
[17] |
Sasaki S, Tateno K, Zhang G Q, Suominen H, Harada Y, Saito S, Fujiwara A, Sogawa T and Muraki K 2013 Appl. Phys. Lett. 103 213502
|
[18] |
Cutaia D, Mselund K E, Brog M, Schmid H, Gignac L, Breslin C M, Karg S, Uccelli E and Riel H 2015 J. Electron Dev. Soc. 3 176
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|