Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 088101    DOI: 10.1088/1674-1056/26/8/088101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Horizontal InAs nanowire transistors grown on patterned silicon-on-insulator substrate

Wang Zhang(张望)1,2, Wei-Hua Han(韩伟华)1,2, Xiao-Song Zhao(赵晓松)1,2, Qi-Feng Lv(吕奇峰)1,2, Xiang-Hai Ji(季祥海)4, Tao Yang(杨涛)4, Fu-Hua Yang(杨富华)1,2,3
1 Engineering Research Center for Semiconductor Integrated Technology, Beijing Engineering Center of Semiconductor Micro-Nano Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
4 Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

High-density horizontal InAs nanowire transistors are fabricated on the interdigital silicon-on-insulator substrate. Hexagonal InAs nanowires are uniformly grown between face-to-face (111) vertical sidewalls of neighboring Si fingers by metal-organic chemical vapor deposition. The density of InAs nanowires is high up to 32 per group of silicon fingers, namely an average of 4 nanowires per micrometer. The electrical characteristics with a higher on/off current ratio of 2×105 are obtained at room temperature. The silicon-based horizontal InAs nanowire transistors are very promising for future high-performance circuits.

Keywords:  InAs nanowires      Si substrate      interdigital structure      MOSFET  
Received:  19 January 2017      Revised:  21 April 2017      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  81.07.Gf (Nanowires)  
  81.16.Dn (Self-assembly)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA02005003) and the National Natural Science Foundation of China (Grant Nos. 61376096 and 61327813).

Corresponding Authors:  Wei-Hua Han, Tao Yang, Fu-Hua Yang     E-mail:  weihua@semi.ac.cn;tyang@semi.ac.cn;fhyang@semi.ac.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Wang Zhang(张望), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Qi-Feng Lv(吕奇峰), Xiang-Hai Ji(季祥海), Tao Yang(杨涛), Fu-Hua Yang(杨富华) Horizontal InAs nanowire transistors grown on patterned silicon-on-insulator substrate 2017 Chin. Phys. B 26 088101

[1] Fang S F, Adomi K, Iyer S, Morkoc H, Zabel H, Choi C and Otsuka N 1990 J. Appl. Phys. 68 R31
[2] Ertekin E, Greaney P A, Chrzan D C and Sands T D 2005 J. Appl. Phys. 97 114325
[3] Tan H, Fan C, La L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L and Pan A L 2016 Nano-Micro Lett. 8 29
[4] Dey A W, Borg B M, Ganjipour B, Ek M, Dick K A, Lind E, Thelander C and Wernersson L E 2013 IEEE Electron Dev. Lett. 34 311
[5] Das Kanungo P, Schmid H, Bjork M T, Gignac M L, Breslin C, Bruley J, Bessire C D and Riel H 2013 Nanotechnology 24 225304
[6] Schmid H, Borg M, Moselund K, Gignac L, Breslin C M, Bruley J, Cutaia D and Riel H 2015 Appl. Phys. Lett. 106 5
[7] Rieger T, Rosenbach D, Vakulov D, Heedt S, Schäpers T, Grützmacher D and Lepsa M I 2016 Nano Lett. 16 1933
[8] Tomioka K and Fukui T 2011 Appl. Phys. Lett. 98 083114
[9] Yi S S, Girolami G, Amano J, Islam M S, Sharma S, Kamins T I and Kimukin I 2006 Appl. Phys. Lett. 89 133121
[10] Shin J C, Choi K J, Kim D Y, Choi W J and Li X L 2012 Crystal Growth and Design 12 2994
[11] Wang X, Du W, Yang X, Zhang X and Yang T 2015 J. Crystal Growth 426 287
[12] Dimitriadis C A 2000 J. Appl. Phys. 88 3624
[13] Konar A, Mathew J, Nayak K, Bajaj M, Pandey R K, Dhara S, Murali K V R M and Deshmukh M M 2014 Nano Lett. 15 1684
[14] Memišević E, Svensson J, Hellenbrand M, Lind E and Wernersson L E 2016 IEEE Electron Dev. Lett. 27 549
[15] Li Q, Huang S Y, Pan D, Wang J Y, Zhao J H and Xu H Q 2014 Appl. Phys. Lett. 105 113106
[16] Burke A M, Carrad D J, Gluschke J G, Storm K, Svensson S F, Linke H, Samuelson L and Micolich A P 2015 Nano Lett. 15 2836
[17] Sasaki S, Tateno K, Zhang G Q, Suominen H, Harada Y, Saito S, Fujiwara A, Sogawa T and Muraki K 2013 Appl. Phys. Lett. 103 213502
[18] Cutaia D, Mselund K E, Brog M, Schmid H, Gignac L, Breslin C M, Karg S, Uccelli E and Riel H 2015 J. Electron Dev. Soc. 3 176
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[5] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[6] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[7] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[8] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[9] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[10] A 3D SiC MOSFET with poly-silicon/SiC heterojunction diode
Sheng-Long Ran(冉胜龙), Zhi-Yong Huang(黄智勇), Sheng-Dong Hu(胡盛东), Han Yang(杨晗), Jie Jiang(江洁), and Du Zhou(周读). Chin. Phys. B, 2022, 31(1): 018504.
[11] Investigation on threshold voltage of p-channel GaN MOSFETs based on p-GaN/AlGaN/GaN heterostructure
Ruo-Han Li(李若晗), Wu-Xiong Fei(费武雄), Rui Tang(唐锐), Zhao-Xi Wu(吴照玺), Chao Duan(段超), Tao Zhang(张涛), Dan Zhu(朱丹), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087305.
[12] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[13] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[14] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[15] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
No Suggested Reading articles found!