|
|
Three-dimensional hexapole focusing of pulsed molecular beam for state selection |
Yi Ke(柯毅), Xiao-Bing Deng(邓小兵), Zhong-Kun Hu(胡忠坤) |
Key Laboratory of Fundamental Physical Quantities Measurements, Ministry of Education, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract We theoretically investigate three-dimensional (3D) focusing of pulsed molecular beam using a series of hexapoles with different orientations. Transversely oriented hexapoles provide both the transverse and longitudinal focusing force and a longitudinally oriented one provides only the transverse force. The hexapole focusing position are designed to realize the simultaneous focusing in three directions. The additional longitudinal focusing compared with the conventional hexapole can suppress the effect of chromatic aberration induced by the molecular longitudinal velocity spread, thus improving the state-selection purity as well as the beam density. Performance comparison of state selection between this 3D focusing hexapole and a conventional one is made using numerical trajectory simulations, choosing CHF3 molecules as a tester. It is confirmed that our proposal can improve the state-selection purity from 68.2% to 96.1% and the beam density by a factor of 2.3.
|
Received: 22 February 2017
Revised: 26 April 2017
Accepted manuscript online:
|
PACS:
|
37.20.+j
|
(Atomic and molecular beam sources and techniques)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504118, 11574099, and 11474115). |
Corresponding Authors:
Zhong-Kun Hu
E-mail: zkhu@hust.edu.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Yi Ke(柯毅), Xiao-Bing Deng(邓小兵), Zhong-Kun Hu(胡忠坤) Three-dimensional hexapole focusing of pulsed molecular beam for state selection 2017 Chin. Phys. B 26 083701
|
[1] |
Kramer K H and Bernstein R B 1965 J. Chem. Phys. 42 767
|
[2] |
Brooks P R and Jones E M 1966 J. Chem. Phys. 45 3449
|
[3] |
Beuhler Jr R J, Bernstein R B and Kramer K H 1966 J. Am. Chem. Soc. 88 5331
|
[4] |
Brooks P R, Jones E M and Smith K 1969 J. Chem. Phys. 51 3073
|
[5] |
Liu F C, Jin M X, Gao X and Ding D J 2006 Chin. Phys. Lett. 23 344
|
[6] |
Liu F C, Jin M X and Ding D J 2006 Chin. Phys. Lett. 23 1165
|
[7] |
Gandhi S R, Curtiss T J and Bernstein R B 1987 Phys. Rev. Lett. 59 2951
|
[8] |
Che D C, Hashinokuchi M, Shimizu Y, Ohoyama H and Kasai T 2001 Phys. Chem. Chem. Phys. 3 4979
|
[9] |
Rakitzis T P, van den Brom A J and Janssen M H M 2004 Science 303 1852
|
[10] |
Kaesdorf S, Schönhense G and Heinzmann U 1985 Phys. Rev. Lett. 54 885
|
[11] |
Gijsbertsen A, Siu W, Kling M F, Johnsson P, Jansen P, Stolte S and Vrakking M J J 2007 Phys. Rev. Lett. 99 213003
|
[12] |
Kuipers E W, Tenner M G, Kleyn A W and Stolte S 1989 Phys. Rev. Lett. 62 2152
|
[13] |
Sitz G O 2002 Rep. Prog. Phys. 65 1165
|
[14] |
Berenbak B, Riedmüller B, Stolte S and Kleyn A W 2004 Chem. Phys. 301 309
|
[15] |
Brooks P R 1976 Science 193 11
|
[16] |
van Beek M C, Berden G, Bethlem H L and ter Meulen J J 2001 Phys. Rev. Lett. 86 4001
|
[17] |
Kirste M, Wang X, Schewe H C, Meijer G, Liu K, van der Avoird A, Janssen L M C, Gubbels K B, Groenenboom G C and van de Meerakker S Y T 2012 Science 338 1060
|
[18] |
Nichols B, Chadwick H, Gordon S, Eyles C, Hornung B, Brouard M, Alexander M, Aoiz F, Gijsbertsen A and Stolte S 2015 Chem. Sci. 6 2202
|
[19] |
Sakai H, Minemoto S, Nanjo H, Tanji H and Suzuki T 2003 Phys. Rev. Lett. 90 083001
|
[20] |
Ghafur O, Rouzée A, Gijsbertsen A, Siu W K, Stolte S and Vrakking M J J 2009 Nat. Phys. 5 289
|
[21] |
Luo S, Zhu R, He L, Hu W, Li X, Ma P, Wang C, Liu F, Roeterdink W G, Stolte S and Ding D 2015 Phys. Rev. A 91 053408
|
[22] |
Ke Y, Deng X B and Hu Z K 2016 J. Phys. B: At. Mol. Opt. Phys. 49 025101
|
[23] |
Crompvoets F M H, Jongma R T, Bethlem H L, van Roij A J A and Meijer G 2002 Phys. Rev. Lett. 89 093004
|
[24] |
Cheng C, van der Poel A P P, Jansen P, Quintero-Pérez M, Wall T E, Ubachs W and Bethlem H L 2016 Phys. Rev. Lett. 117 253201
|
[25] |
Anderson R W 1997 J. Phys. Chem. A 101 7664
|
[26] |
Stolte S, Reuss J and Schwartz H L 1972 Physica 57 254
|
[27] |
Cho V A and Bernstein R B 1991 J. Phys. Chem. 95 8129
|
[28] |
Meerts W L and Ozier I 1981 J. Chem. Phys. 75 596
|
[29] |
Bethlem H L, van Roij A J, Jongma R T and Meijer G 2002 Phys. Rev. Lett. 88 133003
|
[30] |
Jung S, Tiemann E and Lisdat C 2006 Phys. Rev. A 74 040701
|
[31] |
Even U, Jortner J, Noy D, Lavie N and Cossart-Magos C 2000 J. Chem. Phys. 112 8068
|
[32] |
Hillenkamp M, Keinan S and Even U 2003 J. Chem. Phys. 118 8699
|
[33] |
Irimia D, Dobrikov D, Kortekaas R, Voet H, van den Ende D A, Groen W A and Janssen M H 2009 Rev. Sci. Instrum. 80 113303
|
[34] |
Gordy W and Cook R L 1984 Microwave Molecular Spectra, 3rd edn. (New York: Wiley)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|