Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 083302    DOI: 10.1088/1674-1056/26/8/083302
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ultraviolet discharges from a radio-frequency system for potential biological/chemical applications

Joseph Ametepe1, Sheng Peng2, Dennis Manos3
1 Georgia Gwinnett College, School of Science and Technology, Lawrenceville-GA 30078, USA;
2 EXFO, Mississauga, on Canada L5N 6H7;
3 College of William and Mary, Department of Physics, Williamsburg, VA 2385, USA
Abstract  

In this work, we describe a new electrode-less radio-frequency (RF) excitation technique for generating excimers in the vacuum ultraviolet (VUV) and ultraviolet (UV) spectral regions for potential biological/chemical applications. Spectra data of Xe2*, XeI*, and KrI* generated by this new technique are presented. Optical efficiency of the lamp system ranges from 3% to 6% for KrI*, 7% to 13% for XeI*, and 15% to 20% for Xe2*. Also, results of irradiating E-coli with XeI* discharge from this lamp system is presented to show one of the promising applications of such electrode-less apparatus. This new RF lamp system offers an interesting addition to the already existing technologies for generating VUV and UV light for various biological, physical, and chemical processes especially those requiring large area for high productivity.

Keywords:  radio-frequency      ultraviolet light      Xe2*      XeI*      KrI* excimers      escherichia coli  
Received:  15 April 2017      Revised:  10 May 2017      Accepted manuscript online: 
PACS:  33.20.Lg (Ultraviolet spectra)  
  52.50.Dg (Plasma sources)  
  52.80.Yr (Discharges for spectral sources)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
Corresponding Authors:  Joseph Ametepe     E-mail:  jametepe@ggc.edu
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Joseph Ametepe, Sheng Peng, Dennis Manos Ultraviolet discharges from a radio-frequency system for potential biological/chemical applications 2017 Chin. Phys. B 26 083302

[1] Kogelschatz U 1992 Appl. Surf. Sci. 54 410
[2] Gellert B and Kogelschatz U 1991 Appl. Phys. B: Photophys. Laser Chem. 52 14
[3] Muller H, Neiger M, Schorpp V and Stockwald K 1989 Proceedings of the 5th International Symposium on the Science and Technology of Light Sources York, LS 5 171
[4] Kumagai H and Obara M 1989 Appl. Phys. Lett. 54 2619
[5] Kumagai H and Obara M 1989 Appl. Phys. Lett. 55 1583
[6] Nohr R S and MacDonald J G 1995 Radiat. Phys. Chem. 46 983
[7] Zhang J Y 1993 "Photo-induced growth of dielectrics with excimer lamps", Ph. D. Dissertation (Karlsruhe University, Germany)
[8] Esrom H, Zhang J Y and Pedraza A J 1992 Mater. Res. Soc. Symp. Proc. 236 383
[9] Zhang J Y, Esrom H, Kogelschatz U and Emig G 1993 Appl. Surf. Sci. 69 299
[10] Esrom H, Scheytt H, Mehnert R and Von Sonntag C 1992 NATO Advanced Research Workshop on Non-Thermal Techniques for Pollution Control, Cambridge, UK 21
[11] Kogelschatz U 1992 NATO Advanced Research Workshop on Non-Thermal Plasma Techniques for Pollution Control, Cambridge, UK 21
[12] Nohr R S, MacDonald J G, Kogelschatz U, Mark G, Schuchmann H P and Von Sonntag C 1994 J. Photochem. Photobiol. A 79 141
[13] Niwano M, Suemitsu M, Tadeda Y, Miyamoto N and Honma K J. Vac. Sci. Technol. A 10 3171
[14] Zhang J Y, Esrom H, Kogelschatz U and Emig G 1993 Appl. Surf. Sci. 69 299
[15] Zhang J Y, Esrom H, Kogelschatz U and Emig G 1994 J. Adhes. Sci. Technol. 8 1179
[16] Ametepe J D, Diggs J and Manos D M 1999 J. Appl. Sci. 85 11
[17] Alexandrovich B M, Piejak R B and Godyak V A 1996 J. Illum. Eng. Soc. 25 1
[18] El-Habachi A and Schoenbach K H 1998 Appl. Phys. Lett. 73 885
[19] Qion-Rong O, Yue-Dong M, Xu X, Xing-Sheng A and Zhao-Xing R 2004 Chin. Phys. Lett. 21 1317
[20] Shuaibov A K, Shimon L L and Grabovaya I A 2004 Plasma Phys. Rep. 30 710
[21] Zhang L A, Zhao X H and Li H 2002 Chin. Phys. 11 568
[22] Zhang J Y and Boyd I W 1998 J. Appl. Phys. 84 1174
[23] Peng S 2004 Ultraviolet Sources for Advanced Applications in the Vacuum UV and near VUV, College of William and Mary Williamsburg, VA, USA
[24] Tamagake K, Setser D W and Kolts J H 1981 J. Chem. Phys. 74 4286
[25] Cassassa M P, Golde M F and Kvaran A 1978 Chem. Phys. Lett. 59 51
[26] Ewing J J and Brau C A 1975 Phys. Rev. A 12 129
[27] Tellignhuisen J, Hays A K, Hoffman J M and Tisone G C 1976 J. Chem. Phys. 65 4473
[28] Radzykewyzc D T and Tellignhuisen J 1996 J. Chem. Phys. 105 51
[29] Jones M T, Dreiling T D, Setser D W and McDonald R N 1985 J. Phys. Chem. 89 4501
[30] Zhao Y, Yourshaw I, Reiser G, Arnold C C and Neumark D M 1982 J. Chem. Phys. 77 1878
[31] Zhang J Y and Boyd I W 2000 Appl. Phys. B: Lasers and Optics 71 177
[32] Casavecchia P, He G, Sparks R K and Lee Y T 1982 J. Chem. Phys. 77 1878
[33] Peng S, Ametepe J D and Manos D M 2006 J. Appl. Phys. B 83 643
[1] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[2] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[3] Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance
Hui-Fang Xu(许会芳), Wen Sun(孙雯), and Na Wang(王娜). Chin. Phys. B, 2021, 30(7): 078503.
[4] Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Yuechun Jiao(焦月春), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(5): 053202.
[5] Enhanced performance of AlGaN-based ultraviolet light-emitting diodes with linearly graded AlGaN inserting layer in electron blocking layer
Guang Li(李光), Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Jian Jiang(姜健), Xing-Jun Luo(罗幸君), Jia-Qi Guo(郭佳琦), Long-Fei He(贺龙飞), Kang Zhang(张康), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(5): 058502.
[6] Aerodynamic actuation characteristics of radio-frequency discharge plasma and control of supersonic flow
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Hong-Yu Wang(王宏宇), Shan-Guang Guo(郭善广), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2019, 28(2): 024701.
[7] Analysis of non-uniform hetero-gate-dielectric dual-material control gate TFET for suppressing ambipolar nature and improving radio-frequency performance
Hui-Fang Xu(许会芳), Jian Cui(崔健), Wen Sun(孙雯), Xin-Feng Han(韩新风). Chin. Phys. B, 2019, 28(10): 108501.
[8] Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer
Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Wen-Xiao Hu(胡文晓), Guang Li(李光), Xing-Jun Luo(罗幸君), Hu Wang(汪虎), Jia-Kai Xiao(肖稼凯), Jia-Qi Guo(郭佳琦), Xing-Fu Wang(王幸福), Rui Hao(郝锐), Han-Xiang Yi(易翰翔), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(1): 018503.
[9] ZnO-based deep-ultraviolet light-emitting devices
Ying-Jie Lu(卢英杰), Zhi-Feng Shi(史志锋), Chong-Xin Shan(单崇新), De-Zhen Shen(申德振). Chin. Phys. B, 2017, 26(4): 047703.
[10] Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes with double electron blocking layers
Cheng Zhang(张诚), Hui-Qing Sun(孙慧卿), Xu-Na Li(李旭娜), Hao Sun(孙浩), Xuan-Cong Fan(范宣聪), Zhu-Ding Zhang(张柱定), Zhi-You Guo(郭志友). Chin. Phys. B, 2016, 25(2): 028501.
[11] Ultra-low temperature radio-frequency performance of partially depleted silicon-on-insulator n-type metal-oxide-semiconductor field-effect transistors with tunnel diode body contact structures
Kai Lu(吕凯), Jing Chen(陈静), Yuping Huang(黄瑜萍), Jun Liu(刘军), Jiexin Luo(罗杰馨), Xi Wang(王曦). Chin. Phys. B, 2016, 25(11): 118503.
[12] Effects of back gate bias on radio-frequency performance in partially depleted silicon-on-inslator nMOSFETs
Lü Kai (吕凯), Chen Jing (陈静), Luo Jie-Xin (罗杰馨), He Wei-Wei (何伟伟), Huang Jian-Qiang (黄建强), Chai Zhan (柴展), Wang Xi (王曦). Chin. Phys. B, 2015, 24(8): 088501.
[13] Modeling of the nanoparticle coagulation in pulsed radio-frequency capacitively coupled C2H2 discharges
Liu Xiang-Mei (刘相梅), Li Qi-Nan (李奇楠), Li Rui (李瑞). Chin. Phys. B, 2015, 24(7): 075204.
[14] Effect of thermal pretreatment of metal precursor on the properties of Cu2ZnSnS4 films
Wang Wei (王威), Shen Hong-Lie (沈鸿烈), Jin Jia-Le (金佳乐), Li Jin-Ze (李金泽), Ma Yue (马跃). Chin. Phys. B, 2015, 24(5): 056805.
[15] Investigation of high sensitivity radio-frequency readout circuit based on AlGaN/GaN high electron mobility transistor
Zhang Xiao-Yu (张晓渝), Tan Ren-Bing (谭仁兵), Sun Jian-Dong (孙建东), Li Xin-Xing (李欣幸), Zhou Yu (周宇), Lü Li (吕利), Qin Hua (秦华). Chin. Phys. B, 2015, 24(10): 105201.
No Suggested Reading articles found!