|
|
Photoassociation spectra of ultracold 85Rb2 molecule in 0u+ long range state near the 5S1/2+5P1/2 asymptote |
Guodong Zhao(赵国栋)1,2, Dianqiang Su(苏殿强)1,2, Zhonghua Ji(姬中华)1,2, Tengfei Meng(孟腾飞)1,2, Yanting Zhao(赵延霆)1,2, Liantuan Xiao(肖连团)1,2, Suotang Jia(贾锁堂)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We investigate the high resolution photoassociation spectra of 85Rb2 molecules in 0u+ long range state below the (5S1/2 + 5P1/2) asymptote. The 85Rb atomic samples are trapped in a dark magneto-optical trap (MOT) and prepared in the dark state. With the help of trap loss technique, we obtain considerable photoassociation spectroscopy with rovibrational resolution, some of which have never been observed before. The observed spectrum is fitted by a rigid rotation model, and the rotational constants of ultracold 85Rb2 molecule in long range 0u+ are obtained for different vibrational states. By applying the LeRoy-Bernstein method, we assign the vibrational quantum numbers and derive C3 coefficient, which is used to obtain the potential energy curve.
|
Received: 10 March 2017
Revised: 24 April 2017
Accepted manuscript online:
|
PACS:
|
33.15.Mt
|
(Rotation, vibration, and vibration-rotation constants)
|
|
31.50.Df
|
(Potential energy surfaces for excited electronic states)
|
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675120, 11434007, and 61378015), the National Natural Science Foundation of China for Excellent Research Team (Grant No. 61121064), the Shanxi Scholarship Council of China, and the PCSIRT (Grant No. IRT 13076). |
Corresponding Authors:
Zhonghua Ji
E-mail: jzh@sxu.edu.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Guodong Zhao(赵国栋), Dianqiang Su(苏殿强), Zhonghua Ji(姬中华), Tengfei Meng(孟腾飞), Yanting Zhao(赵延霆), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂) Photoassociation spectra of ultracold 85Rb2 molecule in 0u+ long range state near the 5S1/2+5P1/2 asymptote 2017 Chin. Phys. B 26 083301
|
[1] |
Thorsheim H R, Weiner J and Julienne P S 1987 Phys. Rev. Lett. 58 2420
|
[2] |
Miller J D, Cline R A and Heinzen D J 1993 Phys. Rev. Lett. 71 2204
|
[3] |
Zhang W, Xie T, Huang Y, Wang G R and Cong S L 2013 Chin. Phys. B 22 013301
|
[4] |
Cline R A, Miller J D and Heinzen D J 1994 Phys. Rev. Lett. 73 632
|
[5] |
Ji Z H, Zhang H S, Wu J Z, Yuan J P, Yang Y G, Zhao Y T, Ma J, Wang L R, Xiao L T and Jia S T 2012 Phys. Rev. A 85 013401
|
[6] |
Rieger T, Junglen T, Rangwala S A, Pinkse P W H and Rempe G 2005 Phys. Rev. Lett. 95 173002
|
[7] |
Kozlov M G and Labzowsky L N 1995 J. Phys. B: At., Mol. Opt. Phys. 28 1933
|
[8] |
Kuznetsova E, Bragdon T, Côté and Yelin S F 2012 Phys. Rev. A 85 012328
|
[9] |
Thorsten K, Krzysztof G and Julienne P S 2006 Rev. Mod. Phys. 78 1311
|
[10] |
Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483
|
[11] |
Zhang W, Huang Y, Xie T, Wang G R and Cong S L 2010 Phys. Rev. A 82 063411
|
[12] |
Zhang Y C, Wu J Z, Ma J, Zhao Y T, Wang L R, Xiao L T and Jia S T 2010 Acta Phys. Sin. 59 5418 (in Chinese)
|
[13] |
Stwalley W C 1978 Contemp. Phys. 19 65
|
[14] |
Movre M and Pichler G 1977 J. Phys. B: At. Mol. Phys. 10 2631
|
[15] |
Julienne P S and Viguacutee J 1991 Phys. Rev. A 44 4464
|
[16] |
Debs J E, Altin P A, Barter T H, Döring, Dennis G R, McDonald G, Anderson R P, Close J D and Robins N P 2011 Phys. Rev. A 84 033610
|
[17] |
Ratliff L P, Wagshul M E, Lett P D, Rolston S L and Phillips W D 1994 J. Chem. Phys. 101 2638
|
[18] |
James P B, Jr, Chris H G and John L B 1999 Phys. Rev. A 60 4417
|
[19] |
Marin P, Hongmin C and William C S 2004 J. Chem. Phys. 121 6779
|
[20] |
Ma J, Wang X F, Xin T Y, Liu W L, Li Y Q, Wu J Z, Xiao L T and Jia S T 2015 Acta Phys. Sin. 64 153303 (in Chinese)
|
[21] |
Bergeman T, Qi J, Wang D, Huang Y, Pechkis H K, Eyler E E, Gould P L, Stwalley W C, Cline R A, Miller J D and Heinzen D J 2006 J. Phys. B: At., Mol. Opt. Phys. 39 813
|
[22] |
Lysebo M and Veseth L 2008 Phys. Rev. A 77 032721
|
[23] |
LeRoy R J and Bernstein R B 1970 J. Chem. Phys. 52 3869
|
[24] |
Wang L R, Ji Z H, Yuan J P, Yang Y, Zhao Y T, Ma J, Xiao L T and Jia S T 2012 Chin. Phys. B 21 113402
|
[25] |
Gabbanini C, Fioretti A, Lucchesini A, Gozzini S and Mazzoni M 2000 Phys. Rev. Lett. 84 2814
|
[26] |
Yuan J P, Ji Z H, Li Z H, Zhao Y T, Xiao L T and Jia S T 2015 J. Chem. Phys. 143 044311
|
[27] |
Kerman A J, Sage J M, Sainis S, Bergeman T and DeMille D 2004 Phys. Rev. Lett. 92 033004
|
[28] |
Wang C C and Killinger D K 1979 Phys. Rev. A 20 1495
|
[29] |
Marinescu M and Dalgarno A 1995 Phys. Rev. A 52 311
|
[30] |
Vigné-Maeder F 1984 Chem. Phys. 85 139
|
[31] |
Bussery B and Aubert Frecon M 1985 J. Chem. Phys. 82 3224
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|