Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 080702    DOI: 10.1088/1674-1056/26/8/080702
GENERAL Prev   Next  

Effective transport of passive particles induced by chiral-active particles in microchannel

Yunfeng Hua(华昀峰)1, Linli He(何林李)2, Linxi Zhang(章林溪)1
1 Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Department of Physics, Wenzhou University, Wenzhou 325027, China

Transport of passive particles induced by chiral-active particles in microchannel is investigated by using the overdamped Langevin dynamics simulation in a two-dimensional model system. Due to the chirality of active particles and special structure of microchannel, effective ratchet transport of passive particles is achieved. Effective transport of passive particles depends on the width of microchannel (d), the density (ρ), and the angular velocity (ω) of chiral-active particles. There exist optimal parameters for d and ω at which the transport efficiency for passive particles takes its maximal value. This investigation can help us understand the necessity of active motion for living systems to maintain a number of vital processes such as materials transport inside cells and the foraging dynamics of mobile organisms.

Keywords:  transport      active particle      passive particle      overdamped Langevin dynamics simulation      microchannel  
Received:  27 March 2017      Revised:  02 May 2017      Accepted manuscript online: 
PACS:  07.05.Tp (Computer modeling and simulation)  
  77.84.Jd (Polymers; organic compounds)  
  78.40.Pg (Disordered solids)  
  78.67.Qa (Nanorods)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 21374102, 21674096, and 21674082).

Corresponding Authors:  Linxi Zhang     E-mail:
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Yunfeng Hua(华昀峰), Linli He(何林李), Linxi Zhang(章林溪) Effective transport of passive particles induced by chiral-active particles in microchannel 2017 Chin. Phys. B 26 080702

[1] Marchetti M C, Joanny J F, Ramaswamy S, et al. 2013 Rev. Mod. Phys. 85 1143
[2] Elgeti J, Winkler R G and Gompper G 2015 Rep. Prog. Phys. 78 056601
[3] Lauga E and Powers T 2009 Rep. Prog. Phys. 72 096601
[4] Yang M and Ripoll M 2011 Phys. Rev. E 84 061401
[5] Ghosh P K, Misko V R, Marchesoni F and Nori F 2013 Phys. Rev. Lett. 110 268301
[6] Ghosh P K, Li Y, Marchesoni F and Nori F 2015 Phys. Rev. E 92 012114
[7] Nepusz T and Vicsek T 2012 Nat. Phys. 8 568
[8] Elgeti J and Gompper G 2013 Europhys. Lett. 101 48003
[9] Cates M E 2012 Rep. Prog. Phys. 75 042601
[10] Kaiser A, Peshkov A, Sokolov A, et al. 2014 Phys. Rev. Lett. 112 158101
[11] Angelani L, Leonardo R D and Ruocco G 2009 Phys. Rev. Lett. 102 048104
[12] Pototsky A, Hahn A M and Stark H 2013 Phys. Rev. E 87 042124
[13] Potiguar F Q, Farias G A and Ferreira W P 2014 Phys. Rev. E 90 012307
[14] Koumakis N, Maggi C and Leonardo R D 2014 Soft Matter 10 5695
[15] Ai B Q, Zhu W J, He Y F and Zhong W R 2017 J. Stat. Mech. 17 023501
[16] Ai B Q, He Y F and Zhong W R 2017 Phys. Rev. E 95 012116
[17] Costanzo A, Elgeti J, Auth T, et al. 2014 Europhys. Lett. 107 36003
[18] Ai B Q, He Y F and Zhong W R 2015 Soft Matter 11 3852
[19] Maggi C, Lepore A, Solari J, et al. 2013 Soft Matter 9 10885
[20] Chen J X, Guo M M and Ma J 2016 Europhys. Lett. 113 38004
[21] Mijalkov M and Volpe G 2013 Soft Matter 9 6376
[22] Ai B Q 2016 Sci. Rep. 6 18740
[23] Wioland H, Woodhouse F G, Dunkel J, et al. 2013 Phys. Rev. Lett. 110 268102.
[24] Rusconi R, Guasto J S and Stocker R 2014 Nat. Phys. 10 212
[25] Zhang H P, Beer A, Florin E L and Swinney H L 2010 Proc. Natl. Acad. Sci. USA 107 13626
[26] Hill J, Kalkanci O, Mcmurry J L and Koser H 2007 Phys. Rev. Lett. 98 068101
[27] Pototsky A, Hahn A M and Stark H 2013 Phys. Rev. E 87 042124
[28] Hagen B T, Kummel F, Wittkowski R, et al. 2014 Nat. Commun. 5 4829
[29] Ai B Q and Wu J C 2014 J. Chem. Phys. 140 094103
[30] Wu J C and Ai B Q 2016 Sci. Rep. 6 24001
[31] Chen J X, Chen Y G and Ma Y Q 2016 Soft Matter 12 1876
[32] Chen J X, Zhu J X, Ma Y Q and Cao J S 2014 Europhys. Lett. 106 18003
[33] Wu J C, Zhou J N and Ai B Q 2016 Physica A 462 864
[34] Volpe G, Gigan S and Volpe G 2014 Am. J. Phys. 82 659
[35] Huang M J, Schofield J and Kapral R 2017 J. Phys. A: Math. Theor. 50 074001
[36] Prost J, Chauwin J F, Peliti L and Ajdari A 1994 Phys. Rev. Lett. 72 2652
[37] Zhang H P, Beer A, Florin E L and Swinney H L 2010 Proc. Natl. Acad. Sci. USA 107 13626
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[3] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[4] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[5] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[6] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[7] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[8] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[9] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[10] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[11] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[12] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[15] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
No Suggested Reading articles found!