CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Ultra-high-density local structure in liquid water |
Cheng Yang(杨成)1,2,3, Chuanbiao Zhang(张传彪)4, Fangfu Ye(叶方富)1,2,5, Xin Zhou(周昕)2 |
1 Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Mechanical and Electrical Engineering, Mianyang Normal University, Mianyang 621000, China; 4 Department of Physics and Electronic Engineering, Heze University, Heze 274015, China; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We employ multiple order parameters to analyze the local structure of liquid water obtained from all-atom simulations, and accordingly identify three types of molecules in water. In addition to the well-known low-density-liquid and high-density-liquid molecules, the newly identified third type possesses an ultra-high density and over-coordinated H-bonds. The existence of this third type decreases the probability of transition of high-density-liquid molecules to low-density-liquid molecules and increases the probability of the reverse one.
|
Received: 10 August 2019
Revised: 18 September 2019
Accepted manuscript online:
|
PACS:
|
61.20.Ja
|
(Computer simulation of liquid structure)
|
|
64.70.Ja
|
(Liquid-liquid transitions)
|
|
Fund: Project supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-SYS003) and the National Natural Science Foundation of China (Grant Nos. 11574310 and 11774394). |
Corresponding Authors:
Fangfu Ye, Xin Zhou
E-mail: fye@iphy.ac.cn;xzhou@ucas.ac.cn
|
Cite this article:
Cheng Yang(杨成), Chuanbiao Zhang(张传彪), Fangfu Ye(叶方富), Xin Zhou(周昕) Ultra-high-density local structure in liquid water 2019 Chin. Phys. B 28 116104
|
[35] |
Palmer J C, Martelli F, Liu Y, Car R, Panagiotopoulos A Z and Debenedetti P G 2014 Nature 510 385
|
[1] |
Debenedetti P G 2003 J. Phys. Condens. Mat. 15 R1669
|
[36] |
Yagasaki T, Matsumoto M and Tanaka H 2014 Phys. Rev. E 89 020301
|
[2] |
Kumar P, Yan Z, Xu L, Mazza M G, Buldyrev S V, Chen S H, Sastry S and Stanley H E 2006 Phys. Rev. Lett. 97 177802
|
[37] |
Liu D, Zhang Y, Chen C C, Mou C Y, Poole P H and Chen S H 2007 Proc.Natl. Acad. Sci. USA 104 9570
|
[3] |
Russo J and Tanaka H 2014 Nat. Commun. 5 3556
|
[38] |
Mallamace F, Branca C, Broccio M, Corsaro C, Mou C Y and Chen S H 2007 Proc. Natl. Acad. Sci. USA 104 18387
|
[4] |
Ponyatovsky E G, Sinitsyn V V and Pozdnyakova T A 1998 J. Chem. Phys. 109 2413
|
[39] |
Sellberg J A, Huang C, McQueen T, Loh N, Laksmono H, Schlesinger D, Sierra R, Nordlund D, Hampton C and Starodub D 2014 Nature 510 381
|
[5] |
Shiratani E and Sasai M 1996 J. Chem. Phys. 104 7671
|
[40] |
Kim K H, Späh A, Pathak H, Perakis F, Mariedahl D, Amann-Winkel K, Sellberg J A, Lee J H, Kim S, Park J, Nam K H, Katayama T and Nilsson A 2017 Science 358 1589
|
[6] |
Matsumoto M, Baba A and Ohmine I 2007 J. Chem. Phys. 127 134504
|
[41] |
Xu L, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F and Stanley H E 2005 Proc. Natl. Acad. Sci. USA 102 16558
|
[7] |
Wikfeldt K, Nilsson A and Pettersson L G 2011 Phys. Chem. Chem. Phys. 13 19918
|
[42] |
Finney J L, Bowron D T, Soper A K, Loerting T, Mayer E and Hallbrucker A 2002 Phys. Rev. Lett. 89 205503
|
[8] |
Accordino S, Fris J R, Sciortino F and Appignanesi G 2011 Eur. Phys. J. E 34 1
|
[9] |
Appignanesi G, Fris J R and Sciortino F 2009 Eur. Phys. J. E 29 305
|
[10] |
Abascal J L and Vega C 2005 J. Chem. Phys. 123 234505
|
[11] |
Berendsen H, Grigera J and Straatsma T 1987 J. Phys. Chem. 91 6269
|
[12] |
Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L and Head-Gordon T 2004 J. Chem. Phys. 120 9665
|
[13] |
Plimpton S 1995 J. Comput. Phys. 117 1
|
[14] |
Der Spoel D V, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J C 2005 J. Comput. Chem. 26 1701
|
[15] |
Pollock E L and Glosli J 1996 Comp. Phys. Comm. 95 93
|
[16] |
Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys 103 8577
|
[17] |
Starr F W, Sastry S, La Nave E, Scala A, Stanley H E and Sciortino F 2001 Phys. Rev.E 63 041201
|
[18] |
Debenedetti P G and Stillinger F H 2001 Nature 410 259
|
[19] |
Luzar A and Chandler D 1996 Nature 379 55
|
[20] |
Noe F and Fischer S 2008 Curr. Opin. Struc. Biol. 18 154
|
[21] |
Poole P H, Sciortino F, Essmann U and Stanley H E 1992 Nature 360 324
|
[22] |
Wernet P, Nordlund D, Bergmann U, Cavalleri M,Odelius M, Ogasawara H, Näslund L, Hirsch T, Ojamäe L and Glatzel P 2004 Science 304 995
|
[23] |
Tokushima T, Harada Y, Takahashi O, Senba Y, Ohashi H, Pettersson L G, Nilsson A and Shin S 2008 Chem. Phys. Lett. 460 387
|
[24] |
Huang C, Wikfeldt K T, Tokushima T, Nordlund D, Harada Y,Bergmann U, Niebuhr M, Weiss T, Horikawa Y and Leetmaa M 2009 Proc. Natl. Acad. Sci. USA 106 15214
|
[25] |
Paolantoni M, Lago N F, Albertĺ M and Lagana A 2009 J. Phys. Chem. A 113 15100
|
[26] |
Nilsson A and Pettersson L G 2011 Chem. Phys. 389 1
|
[27] |
Nilsson A, Huang C and Pettersson L G 2012 J. Mol. Liq. 176 2
|
[28] |
Pallares G, Azouzi M E M, González M A, Aragones J L, Abascal J L, Valeriani C and Caupin F 2014 Proc. Natl. Acad. Sci. USA 111 7936
|
[29] |
Abascal J L and Vega C 2010 J. Chem. Phys. 133 234502
|
[30] |
Kesselring T, Franzese G, Buldyrev S, Herrmann H and Stanley H E 2012 Sci. Rep. 2 474
|
[31] |
Liu Y, Palmer J C, Panagiotopoulos A Z and Debenedetti P G 2012 J. Chem. Phys. 137 214505
|
[32] |
Li Y, Li J and Wang F 2013 Proc. Natl. Acad. Sci. USA 110 12209
|
[33] |
Giovambattista N 2013 Liquid Polymorphism 152 113
|
[34] |
Poole P H, Bowles R K, Saika-Voivod I and Sciortino F 2013 J. Chem. Phys. 138 034505
|
[35] |
Palmer J C, Martelli F, Liu Y, Car R, Panagiotopoulos A Z and Debenedetti P G 2014 Nature 510 385
|
[36] |
Yagasaki T, Matsumoto M and Tanaka H 2014 Phys. Rev. E 89 020301
|
[37] |
Liu D, Zhang Y, Chen C C, Mou C Y, Poole P H and Chen S H 2007 Proc.Natl. Acad. Sci. USA 104 9570
|
[38] |
Mallamace F, Branca C, Broccio M, Corsaro C, Mou C Y and Chen S H 2007 Proc. Natl. Acad. Sci. USA 104 18387
|
[39] |
Sellberg J A, Huang C, McQueen T, Loh N, Laksmono H, Schlesinger D, Sierra R, Nordlund D, Hampton C and Starodub D 2014 Nature 510 381
|
[40] |
Kim K H, Späh A, Pathak H, Perakis F, Mariedahl D, Amann-Winkel K, Sellberg J A, Lee J H, Kim S, Park J, Nam K H, Katayama T and Nilsson A 2017 Science 358 1589
|
[41] |
Xu L, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F and Stanley H E 2005 Proc. Natl. Acad. Sci. USA 102 16558
|
[42] |
Finney J L, Bowron D T, Soper A K, Loerting T, Mayer E and Hallbrucker A 2002 Phys. Rev. Lett. 89 205503
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|