Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 073102    DOI: 10.1088/1674-1056/26/7/073102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electronic transport properties of lead nanowires

Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉)
Key Laboratory for Liquid & #8211;Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
Abstract  Lead nanowire occupies a very important position in an electronic device. In this study, a genetic algorithm (GA) method has been used to simulate the Pb nanowire. The result shows that Pb nanowires are a multishell cylinder. Each shell consists of atomic rows wound up helically side by side. The quantum electron transport properties of these structures are calculated based on the non-equilibrium Green function (NEGF) combined with the density functional theory (DFT), which indicate that electronic transport ability increases gradually with the atomic number increase. In addition, the thickest nanowire shows excellent electron transport performance. It possesses great transmission at the Fermi level due to the strongest delocalization of the electronic state. The results provide valuable information on the relationship between the transport properties of nanowires and their diameter.
Keywords:  lead nanowires      electronic transport      genetic algorithm      non-equilibrium Green function      density functional theory  
Received:  24 February 2017      Revised:  20 April 2017      Accepted manuscript online: 
PACS:  31.15.E-  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.51671114) and the Special Funding in the Project of the Taishan Scholar Construction Engineering and National Key Research Program of China (Grant No.2016YFB0300501).
Corresponding Authors:  Hui Li     E-mail:  lihuilmy@hotmail.com

Cite this article: 

Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉) Electronic transport properties of lead nanowires 2017 Chin. Phys. B 26 073102

[1] Srivastava A, Tyagi N and Singh R 2011 Mater. Chem. Phys. 127 489
[2] Wang J, Jia J F, Ma X C, Shen Q T, Han T Z, Jin A Z, Lu L, Gu C Z, Tian M L and Xie X 2010 J. Vac. Sci. Technol. B 28 678
[3] Yang Y, Ding S, Araki T, Jiu J, Sugahara T, Wang J, Vanfleteren J, Sekitani T and Suganuma K 2016 Nano Res. 9 401
[4] Repetto D, Giordano M C, Martella C and Mongeot F B 2015 Appl. Surf. Sci. 327 444
[5] Volosskiy B, Niwa K, Chen Y, Zhao Z, Weiss N O, Zhong X, Ding M and Lee C 2015 ACS Nano 9 3044
[6] Wang K, Meng Q, Zhang Y, Wei Z and Miao M 2013 Adv. Mater. 25 1494
[7] Wang Q, Wang X, Liu B, Yu G, Hou X, Chen D and Shen G 2013 J. Mater. Chem. A 1 2468
[8] Terrones M 2013 Int. Mater. Rev. 49 325
[9] Zheng G, Cui Y, Karabulut E, Wåberg L, Zhu H and Hu L 2013 MRS Bull. 38 320
[10] Tang D M, Ren C L, Wang M S, Wei X, Kawamoto N, Liu C, Bando Y, Mitome M, Fukata N and Golberg D 2012 Nano Lett. 12 1898
[11] Li M, Zhang H Y, Guo C X, Xu J B and Fu X J 2009 Chin. Phys. B 18 1594
[12] Kocakaplan Y and Kantar E 2014 Chin. Phys. B 23 046801
[13] Li S, Huang G Y and Guo J K 2017 Chin. Phys. B 26 027305
[14] Qin R, Wang C H, Zhu W and Zhang Y 2012 AIP Adv. 2 022159
[15] Lang N D 1995 Phys. Rev. B 52 5335
[16] Greil J, Lugstein A, Zeiner C, Strasser G and Bertagnolli E 2012 Nano Lett. 12 6230
[17] Zhang X, Li H and Liew K M 2007 J. Appl. Phys. 102 073709
[18] Zhang L, Wu W, Zhou Y, Ren H, Dong J and Li H 2016 Phys. Chem. Chem. Phys. 18 5336
[19] Li H, Zhang X, Sun F, Li Y, Liew K M and He X 2007 J. Appl. Phys. 102 013702
[20] Wang B, Yin S, Wang G, Buldum A and Zhao J 2001 Phys. Rev. Lett. 86 2046
[21] Wang B, Yin S, Wang G and Zhao J 2001 J. Phys. -Condens. Matter 13 L403
[22] Deaven D M and Ho K M 1995 Phys. Rev. Lett. 75 288
[23] Mao C, Solis D J, Reiss B D, Kottmann S T, Sweeney R Y, Hayhurst A, Georgiou G, Iverson B and Belcher A M 2004 Science 303 213
[24] Srivastava A, Jain S and Nagawat A 2013 Quantum Matter 2 469
[25] Dong J and Li H 2012 J. Phys. Chem. C 116 17259
[26] Zeng J, Chen K Q, He J, Zhang X J and Sun C Q 2011 J. Phys. Chem. C 115 25072
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Gülseren O, Ercolessi F and Tosatti E 1998 Phys. Rev. Lett. 80 3775
[29] Bilalbegović G 1998 Phys. Rev. B 58 15412
[30] Shi X, Dai Z, Zhong G, Zheng X and Zeng Z 2007 J. Phys. Chem. C 111 10130
[31] Li H, Liew K M, Zhang X, Zhang J, Liu X and Bian X 2008 J. Phys. Chem. B 112 15588
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[8] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[12] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[13] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[14] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[15] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
No Suggested Reading articles found!