CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene via van der Pauw geometry |
Rui-Song Ma(马瑞松)1,2,3, Qing Huan(郇庆)1,2,3, Liang-Mei Wu(吴良妹)1,2,3, Jia-Hao Yan(严佳浩)1,2,3, Yu-Yang Zhang(张余洋)2, Li-Hong Bao(鲍丽宏)1,2,3, Yun-Qi Liu(刘云圻)4, Shi-Xuan Du(杜世萱)1,2,3, Hong-Jun Gao(高鸿钧)1,2,3 |
1 Institute of Physics & School of Physical Sciences, University of Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China;
4 Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We report the direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene on SiO2/Si via van der Pauw geometry by using a home-designed four-probe scanning tunneling microscope (4P-STM). The gate-tunable conductivity and mobility are extracted from standard van der Pauw resistance measurements where the four STM probes contact the four peripheries of hexagonal graphene flakes, respectively. The high homogeneity of transport properties of the single-crystalline graphene flake is confirmed by comparing the extracted conductivities and mobilities from three setups with different geometry factors. Our studies provide a reliable solution for directly evaluating the entire electrical properties of graphene in a non-invasive way and could be extended to characterizing other two-dimensional materials.
|
Received: 14 March 2017
Revised: 10 April 2017
Accepted manuscript online:
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
Fund: Project supported by the Science Fund from the Ministry of Science and Technology of China (Grant No. 2013CBA01600), the National Key Research & Development Project of China (Grant No. 2016YFA0202300), the National Natural Science Foundation of China (Grant Nos. 61474141, 61674170, 61335006, 61390501, 51325204, and 51210003), the Chinese Academy of Sciences (CAS), and Youth Innovation Promotion Association of CAS (Grant No. 20150005). |
Corresponding Authors:
Li-Hong Bao, Hong-Jun Gao
E-mail: lhbao@iphy.ac.cn;hjgao@iphy.ac.cn
|
Cite this article:
Rui-Song Ma(马瑞松), Qing Huan(郇庆), Liang-Mei Wu(吴良妹), Jia-Hao Yan(严佳浩), Yu-Yang Zhang(张余洋), Li-Hong Bao(鲍丽宏), Yun-Qi Liu(刘云圻), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene via van der Pauw geometry 2017 Chin. Phys. B 26 066801
|
[1] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[2] |
Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385
|
[3] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[4] |
Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
|
[5] |
Schwierz F 2010 Nat. Nanotechnol. 5 487
|
[6] |
Yin Z Y, Zhu J X, He Q Y, Cao X H, Tan C L, Chen H Y, Yan Q Y and Zhang H 2014 Adv. Energy Mater. 4 1300574
|
[7] |
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
|
[8] |
Guo W, Jing F, Xiao J, Zhou C, Lin Y W and Wang S 2016 Adv. Mater. 28 3152
|
[9] |
Boyd D A, Lin W H, Hsu C C, Teague M L, Chen C C, Lo Y Y, Chan W Y, Su W B, Cheng T C, Chang C S, Wu C I and Yeh N C 2015 Nat. Commun. 6 6620
|
[10] |
Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T and Geim A K 2011 Nano Lett. 11 2396
|
[11] |
Du J, Li J Y, Kang N, Lin L, Peng H L, Liu Z F and Xu H Q 2016 Nanotechnology 27 245204
|
[12] |
Miccoli I, Edler F, Pfnur H and Tegenkamp C 2015 J. Phys.: Condens. Matter 27 223201
|
[13] |
Van der Pauw L J 1958 Philips Technol. Rev. 20 220
|
[14] |
Van der Pauw L J 1958 Philips Res. Rep. 13 1
|
[15] |
Dorgan V E, Bae M H and Pop E 2010 Appl. Phys. Lett. 97 082112
|
[16] |
Lin X, He X B, Lu J L, Gao L, Huan Q, Shi D X and Gao H J 2005 Chin. Phys. 14 1536
|
[17] |
Zou Q, Liu M, Wang G Q, Lu H L, Yang T Z, Guo H M, Ma C R, Xu X, Zhang M H, Jiang J C, Meletis E I, Lin Y, Gao H J and Chen C L 2014 ACS Appl. Mater. Interfaces 6 6704
|
[18] |
Guo Q, Qin Z, Huang M, Mantsevich V N and Cao G 2016 Chin. Phys. B 25 036801
|
[19] |
Nakayama T, Kubo O, Shingaya Y, Higuchi S, Hasegawa T, Jiang C S, Okuda T, Kuwahara Y, Takami K and Aono M 2012 Adv. Mater. 24 1675
|
[20] |
Higuchi S, Kubo O, Kuramochi H, Aono M, Nakayama T 2011 Nanotechnology 22 285205
|
[21] |
Clark K W, Zhang X G, Vlassiouk I V, He G W, Feenstra R M and Li A P 2013 ACS Nano 7 7956
|
[22] |
Zhang Y F, Gao T, Gao Y B, Xie S B, Ji Q Q, Yan K, Peng H L and Liu Z F 2011 ACS Nano 5 4014
|
[23] |
Blake P, Hill E W, Neto A H C, Novoselov K S, Jiang D, Yang R, Booth T J and Geim A K 2007 Appl. Phys. Lett. 91 063124
|
[24] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
|
[25] |
Jiang Z, Zhang Y, Tan Y W, Stormer H L and Kim P 2007 Solid State Commun. 143 14
|
[26] |
Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonnell S, Colombo L, Vogel E M, Ruoff R S and Wallace R M 2011 Appl. Phys. Lett. 99 122108
|
[27] |
Tien D H, Park J Y, Kim K B, Lee N and Seo Y 2016 Sci. Rep. 6 25050
|
[28] |
Choi M S, Lee S H and Yoo W J 2011 J. Appl. Phys. 110 073305
|
[29] |
Li X L, Han W P, Wu J B, Qiao X F, Zhang J and Tan P H 2017 Adv. Funct. Mater., January, 2017
|
[30] |
Vasic B, Zurutuza A and Gajic R 2016 Carbon 102 304
|
[31] |
Zhu W J, Low T, Perebeinos V, Bol A A, Zhu Y, Yan H G, Tersoff J and Avouris P 2012 Nano Lett. 12 3431
|
[32] |
Wu Q, Jung S J, Jang S K, Lee J, Jeon I, Suh H, Kim Y H, Lee Y H, Lee S and Song Y J 2015 Nanoscale 7 10357
|
[33] |
Subhedar K M, Sharma I and Dhakate S R 2015 Phys. Chem. Chem. Phys. 17 22304
|
[34] |
Karamat S, Sonuşen S, Dede M, Uysalli Y, Özgönül E and Oral A 2016 J. Mater. Res. 31 46
|
[35] |
Zeng J, Liu J, Zhang S X, Zhai P F, Yao H J, Duan J L, Guo H, Hou M D and Sun Y M 2015 Chin. Phys. B 24 086103
|
[36] |
Nagashio K, Nishimura T, Kita K and Toriumi A 2010 Jpn. J. Appl. Phys. 49 051304
|
[37] |
Fang X Y, Yu X X, Zheng H M, Jin H B, Wang L and Cao M S 2015 Phys. Lett. A 379 2245
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|