Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 025205    DOI: 10.1088/1674-1056/26/2/025205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

High sampling-rate measurement of turbulence velocity fluctuations in Mach 1.8 Laval jet using interferometric Rayleigh scattering

Li Chen(陈力), Fu-Rong Yang(杨富荣), Tie Su(苏铁), Wei-Yi Bao(鲍伟义), Bo Yan(闫博), Shuang Chen(陈爽), Ren-Bing Li(李仁兵)
China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract  Interferometric Rayleigh scattering diagnostic technique for the time-resolved measurement of flow velocity is studied. Theoretically, this systematic velocity-measured accuracy can reach up to 1.23 m/s. Measurement accuracy is then evaluated by comparing with hot wire anemometry results. Moreover, the distributions of velocity and turbulence intensity in a supersonic free jet from a Laval nozzle with a Mach number of 1.8 are also obtained quantitatively. The sampling rate in this measurement is determined to be approximately 10 kHz.
Keywords:  Fabry-Pérot interferometer      Rayleigh scattering      time-resolved velocity measurement      turbulence  
Received:  04 October 2016      Revised:  08 November 2016      Accepted manuscript online: 
PACS:  52.38.Bv (Rayleigh scattering; stimulated Brillouin and Raman scattering)  
  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  47.60.Kz (Flows and jets through nozzles)  
  47.85.Gj (Aerodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11272337).
Corresponding Authors:  Li Chen     E-mail:  chenli_03@163.com

Cite this article: 

Li Chen(陈力), Fu-Rong Yang(杨富荣), Tie Su(苏铁), Wei-Yi Bao(鲍伟义), Bo Yan(闫博), Shuang Chen(陈爽), Ren-Bing Li(李仁兵) High sampling-rate measurement of turbulence velocity fluctuations in Mach 1.8 Laval jet using interferometric Rayleigh scattering 2017 Chin. Phys. B 26 025205

[1] He L, Yi S H, Tian L F, Chen Z and Zhu Y Z 2013 Chin. Phys. B 22 024704
[2] Amy F, Mielke R G, Seasholtz K A and Elam J P 2005 Exp. Fluids 39 441
[3] Ardekani M A and Motlagh M M 2010 Measurement 43 31
[4] Kaffelabc A, Moureha J, Harionbc J L and Russeilbc S 2016 Exp. Therm. Fluid Sci. 77 71
[5] Dorothea I, Hollnagel M, Paul E, Summers P, Spyros S, Kollias M and Dimos P P 2007 J. Magn. Reson. Imaging 26 1493
[6] Yeh Y and Cummins H Z 1964 Appl. Phys. Lett. 4 173
[7] Lock J A, Seasholtz R G and John W T 1992 Appl. Opt. 31 2839
[8] Seasholtz R G, Zupanc F J and Schneider S J 1992 J. Propulsion and Power 8 935
[9] Andres N, Arroyo P and Quintanilla M 1997 Appl. Opt. 36 6997
[10] Seasholtz R G and Greer L C 1998 "Rayleigh scattering diagnostic for measurement of temperature and velocity in harsh environments", AIAA 36th Aerospace Sciences Meeting and Exhibition, January 12-15, 1998, Reno, NV, p. 0206
[11] Bivolaru D, Danehy P M, Gaffney R L Jr and Cutler A D 2008 "Direct-view multi-point two-component interferometric Rayleigh scattering velocimeter", AIAA 46th Aerospace Sciences Meeting and Exhibition, January 9-12, 2008, Reno, NV, p. 0236
[12] Bivolaru D, Danehy P M and Lee J W 2006 Opt. Lett. 31 1645
[13] Bivolaru D, Danehy P M, Lee J W, Gaffney R L Jr and Cutler A D 2006 "Single-pulse Multi-point Multi-component Interferometric Rayleigh Scattering Velocimeter", AIAA 44th Aerospace Sciences Meeting and Exhibition, January 9-12, 2006, Reno, NV, p. 0836
[14] Mielke A F, Clem M M and Elam K A 2010 "Rayleigh scattering measurements using a tunable liquid crystal Fabry-Perot interferometer", AIAA 27th Aerodynamic Measurement Technology and Ground Testing Conference, June 28-July 1, 2010, Chicago, Illinois, USA, p. 4350
[15] Mielke A F and Elam K A 2009 Exp. Fluids 47 673
[16] Seasholtz R G, Panda J and Elam K A 2001 "Rayleigh scattering diagnostic for dynamic measurement of velocity fluctuations in high speed jets", AIAA 39th Aerospace Sciences Meeting & Exhibition, January 8-11, 2001, Reno, NV, p. 0847
[17] Seasholtz R G, Panda J and Elam K A 2002 AIAA 40th Aerospace Sciences Meeting & Exhibition, January 14-17, 2002, Reno, NV, p. 0827
[18] Mielke A F, Seasholtz R G, Elam K A and Panda J 2005 Exp. Fluids 39 441
[19] Mielke A F and Elam K A 2006 "Rayleigh Scattering Diagnostic for Measurement of Temperature, Velocity, and Density Fluctuation Spectra", AIAA 44th Aerospace Sciences Meeting & Exhibition, January 9-12, 2006, Reno, NV, p. 0837
[20] Mielke A F and Elam K A 2009 AIAA journal 47 850
[21] Chen L, Yang F R, Su T, Bao W Y, Qi X H and Chen S 2015 Acta Photon. Sin. 44 0112004
[22] Amy F F, Michelle M C and Kristie A E 2012 "Improvement in Rayleigh Scattering Measurement Accuracy", AIAA 50th Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January 9-12, 2012, Nashville, Tennessee, p. 1060
[23] Seasholtz R G and Panda J 2000 "Rayleigh Scattering Diagnostic for Simultaneous Measurements of Dynamic Density and Velocity", AIAA 38th Aerospace Sciences Meeting & Exhibition, January 10-13, 2000, Reno, NV, p. 0642
[24] Xia H Y, Dou X K, Sun D S, Shu Z F, Xue X H, Han Y, Hu D D, Han Y L and Cheng T D 2012 Opt. Express 20 15286
[25] Xia H Y, Dou X K, Shangguan M J, Zhao R C, Han Y L, Shu Z F, Xue X H, Han Y, Wang C and Qiu J W 2014 Opt. Express 22 21775
[26] Xia H Y, Shangguan M J, Wang C, Shentu G L, Qiu J W, Zhang Q, Dou X K and Pan J W 2016 Opt. Lett. 41 5218
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[3] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[4] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[5] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[6] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[7] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[8] Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering
Bo Yan(闫博), Li Chen(陈力), Meng Li(李猛), Shuang Chen(陈爽), Cheng Gong(龚诚), Fu-Rong Yang(杨富荣), Yun-Gang Wu(吴运刚), Jiang-Ning Zhou(周江宁), Jin-He Mu(母金河). Chin. Phys. B, 2020, 29(2): 024701.
[9] The role of velocity derivative skewness in understanding non-equilibrium turbulence
Feng Liu(刘锋), Le Fang(方乐), and Liang Shao(邵亮)$. Chin. Phys. B, 2020, 29(11): 114702.
[10] Properties of multi-Gaussian Schell-model beams carrying an edge dislocation propagating in oceanic turbulence
Da-Jun Liu(刘大军), Yao-Chuan Wang(王耀川), Gui-Qiu Wang(王桂秋), Hong-Ming Yin(尹鸿鸣), Hai-Yang Zhong(仲海洋). Chin. Phys. B, 2019, 28(10): 104207.
[11] Reversed rotation of limit cycle oscillation and dynamics of low-intermediate-high confinement transition
Dan-Dan Cao(曹丹丹), Feng Wan(弯峰), Ya-Juan Hou(侯雅娟), Hai-Bo Sang(桑海波), Bai-Song Xie(谢柏松). Chin. Phys. B, 2018, 27(6): 065201.
[12] Influence of moderate-to-strong anisotropic non-Kolmogorov turbulence on intensity fluctuations of a Gaussian-Schell model beam in marine atmosphere
Mingjian Cheng(程明建), Lixin Guo(郭立新), Jiangting Li(李江挺). Chin. Phys. B, 2018, 27(5): 054203.
[13] Further analysis of scintillation index for a laser beam propagating through moderate-to-strong non-Kolmogorov turbulence based on generalized effective atmospheric spectral model
Jing Ma(马晶), Yu-Long Fu(付玉龙), Si-Yuan Yu(于思源), Xiao-Long Xie(谢小龙), Li-Ying Tan(谭立英). Chin. Phys. B, 2018, 27(3): 034201.
[14] Numerical study of heat-transfer in two-and quasi-two-dimensional Rayleigh-Bénard convection
Zhen-Yuan Gao(高振源), Jia-Hui Luo(罗嘉辉), Yun Bao(包芸). Chin. Phys. B, 2018, 27(10): 104702.
[15] Turbulence modulation model for gas-particle flow based on probability density function approach
Lu Wang(王路), Jiang-rong Xu(徐江荣). Chin. Phys. B, 2017, 26(8): 084702.
No Suggested Reading articles found!