Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 084702    DOI: 10.1088/1674-1056/26/8/084702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Turbulence modulation model for gas-particle flow based on probability density function approach

Lu Wang(王路)1, Jiang-rong Xu(徐江荣)1,2
1 School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  

The paper focuses on the turbulence modulation problem in gas-particle flow with the use of probability density function (PDF) approach. By means of the PDF method, a general statistical moment turbulence modulation model without considering the trajectory difference between two phases is derived from the Navier-Stokes equations. A new turbulence production term induced by the dispersed-phase is analyzed and considered. Furthermore, the trajectory difference between two media is taken into account. Subsequently, a new k-ε turbulence modulation model in dilute particle-laden flow is successfully set up. Then, the changes to several terms, including the turbulence production, dissipation, and diffusion terms, are well described consequently. The promoted model provides a more probable explanation for the modification of particles on the turbulence. Finally, we applied the model to simulate a gas-particle turbulence flow case in a wall jet, and found that the simulation results agree well with the experimental data.

Keywords:  turbulence modulation model      PDF approach      gas-particle flow      turbulence flow  
Received:  23 December 2016      Revised:  20 March 2017      Accepted manuscript online: 
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  47.55.-t (Multiphase and stratified flows)  
  47.55.Kf (Particle-laden flows)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51176044).

Corresponding Authors:  Jiang-rong Xu     E-mail:  Jrxu@hdu.edu.cn

Cite this article: 

Lu Wang(王路), Jiang-rong Xu(徐江荣) Turbulence modulation model for gas-particle flow based on probability density function approach 2017 Chin. Phys. B 26 084702

[1] Tsuji Y, Morikawa Y and Shiomi H 1984 J. Fluid Mech. 139 417
[2] Elgobashi S 2006 IUTAM Symposium on Computational Approaches to Multiphase Flow, October 2-4, 2004, Illinois, USA, p. 3.
[3] Luo K, Fan J, Cen K and Roy P 2005 Proc. Roy. Soc. A-Math. Phys. Eng. Sci. 461 3279
[4] Hetsroni G 1989 Int. J. Multiphase Flow 15 735
[5] Geiss S, Dreizler A and Stojanovic Z 2004 Exp. Fluids 36 344
[6] Gore R A and Crowe C T 1989 Int. J. Multiphase Flow 15 279
[7] Chen C P and Wood P E 1985 Can. J. Chem. Eng. 63 349
[8] Gouesbet G and Berlemont A 1999 Prog. Energy Combust. Sci. 25 133
[9] Yuan Z, and Michaelides E 1992 Int. J. Multiphase Flow 18 779
[10] Yarin L P and Hetsroni G 1994 Int. J. Multiphase Flow 20 27
[11] Kenning V M and Crowe C T 1997 Int. J. Multiphase Flow 23 403
[12] C T Crowe 2000 Int. J. Multiphase Flow 26 719
[13] Mando M, Lightstone M F, Rosendahl L, Yin C and Sorensen H 2009 Int. J. Heat Fluid Flow 30 331
[14] Reeks M W 2005 J. Fluid Mech. 522 263
[15] Strautnieks S S, Thompson R J, Gardiner R M and Chung E 1996 Fluid Dyn. 31 261
[16] Zaichik L I, Fede P, Simonin O and Alipchenkov V M 2009 Int. J. Multiphase Flow 35 868
[17] Pope S B 1983 Phys. Fluids 26 3448
[18] Pope S B and Chen Y L 1990 Phys. Fluids 2 1437
[19] Minier J P and Peirano E 2001 Phys. Rep. 352 1
[20] Pope S B 1994 Ann. Rev. Fluid Mech. 26 23
[21] Haworth D C and Pope S B 1986 Phys. Fluids 30 387
[22] Reeks M W 1980 J. Fluid Mech. 97 569
[23] Furutsu K 1963 J. Res. Nat. Bur. Standards 67 D303
[24] van Kampen N G 1974 Physica 74 215
[25] Öttinger H C 1996 Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms (Berlin, Heidelberg: Springer) pp. 300-301.
[26] Farhanieh B, Davidson L and Sundén B 1993 Int. J. Numer. Methods Fluids 16 525
[27] Boussinesq J 1877 Mem. Pre. Par div savant a I'Acad. Sci. Paris 23 1
[28] Zhang Z S, Cui G X and Xu C X 2005 Theory and Modeling of Turbulence (Beijing: Tsinghua University press) p. 211 (in Chinese)
[29] Lightstone M F and Hodgson S M 2004 Can. J. Chem. Eng. 82 209
[30] Sato Y, Hishida K and Maeda M 1996 J. Fluids Eng. 118 307
[31] Xu J R and Wang L 2014 Appl. Mech. Mater. 668-669 318
[1] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[2] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[3] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Analysis of natural frequency for imaging interface in liquid lens
Na Xie(谢娜). Chin. Phys. B, 2021, 30(10): 104702.
[6] An improved global-direction stencil based on the face-area-weighted centroid for the gradient reconstruction of unstructured finite volume methods
Ling-Fa Kong(孔令发), Yi-Dao Dong(董义道)†, Wei Liu(刘伟), and Huai-Bao Zhang(张怀宝). Chin. Phys. B, 2020, 29(10): 100203.
[7] Improved spatial filtering velocimetry and its application in granular flow measurement
Ping Kong(孔平), Bi-De Wang(王必得), Peng Wang(王蓬), Zivkovic V, Jian-Qing Zhang(张建青). Chin. Phys. B, 2020, 29(7): 074201.
[8] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[9] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[10] A novel particle tracking velocimetry method for complex granular flow field
Bi-De Wang(王必得), Jian Song(宋健), Ran Li(李然), Ren Han(韩韧), Gang Zheng(郑刚), Hui Yang(杨晖). Chin. Phys. B, 2020, 29(1): 014207.
[11] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[12] Relaxation-rate formula for the entropic lattice Boltzmann model
Weifeng Zhao(赵伟峰), Wen-An Yong(雍稳安). Chin. Phys. B, 2019, 28(11): 114701.
[13] Stabilized seventh-order dissipative compact scheme for two-dimensional Euler equations
Jia-Xian Qin(秦嘉贤), Ya-Ming Chen(陈亚铭), Xiao-Gang Deng(邓小刚). Chin. Phys. B, 2019, 28(10): 104701.
[14] On-node lattices construction using partial Gauss-Hermite quadrature for the lattice Boltzmann method
Huanfeng Ye(叶欢锋), Zecheng Gan(干则成), Bo Kuang(匡波), Yanhua Yang(杨燕华). Chin. Phys. B, 2019, 28(5): 054702.
[15] Multi-bubble motion behavior of electric field based on phase field model
Chang-Sheng Zhu(朱昶胜), Dan Han(韩丹), Li Feng(冯力), Sheng Xu(徐升). Chin. Phys. B, 2019, 28(3): 034701.
No Suggested Reading articles found!