Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 020303    DOI: 10.1088/1674-1056/26/2/020303
GENERAL Prev   Next  

Round-robin differential quadrature phase-shift quantum key distribution

Chun Zhou(周淳)1,2, Ying-Ying Zhang(张莹莹)1,2, Wan-Su Bao(鲍皖苏)1,2, Hong-Wei Li(李宏伟)1,2, Yang Wang(汪洋)1,2, Mu-Sheng Jiang(江木生)1,2
1 Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Recently, a round-robin differential phase-shift (RRDPS) protocol was proposed [Nature 509, 475 (2014)], in which the amount of leakage is bounded without monitoring the signal disturbance. Introducing states of the phase-encoded Bennett-Brassard 1984 protocol (PE-BB84) to the RRDPS, this paper presents another quantum key distribution protocol called round-robin differential quadrature phase-shift (RRDQPS) quantum key distribution. Regarding a train of many pulses as a single packet, the sender modulates the phase of each pulse by one of 0,π/2,π,3π/2, then the receiver measures each packet with a Mach-Zehnder interferometer having a phase basis of 0 or π/2. The RRDQPS protocol can be implemented with essential similar hardware to the PE-BB84, so it has great compatibility with the current quantum system. Here we analyze the security of the RRDQPS protocol against the intercept-resend attack and the beam-splitting attack. Results show that the proposed protocol inherits the advantages arising from the simplicity of the RRDPS protocol and is more robust against these attacks than the original protocol.
Keywords:  round-robin differential phase-shift protocol      quantum key distribution      intercept-resend attack      beam-splitting attack  
Received:  01 September 2016      Revised:  17 October 2016      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505261 and 11304397) and the National Basic Research Program of China (Grant No. 2013CB338002).
Corresponding Authors:  Wan-Su Bao     E-mail:  2010thzz@sina.com

Cite this article: 

Chun Zhou(周淳), Ying-Ying Zhang(张莹莹), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Mu-Sheng Jiang(江木生) Round-robin differential quadrature phase-shift quantum key distribution 2017 Chin. Phys. B 26 020303

[1] Lo H K and Chau H F 1999 Science 283 2050
[2] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[3] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computer Systems and Signal Processing, Banglore: India, p. 175
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[6] Inoue K, Waks E and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902
[7] Scarani V, Acin A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901
[8] Gu Y B, Bao W S, Wang Y and Zhou C 2016 Chin. Phys. Lett. 33 40301
[9] Yin Z Q, An X B and Han Z F 2015 Acta Phys. Sin. 64 140303 (in Chinese)
[10] Li Y, Bao W S, Li H W, Zhou C and Wang Y 2016 Chin. Phys. B 25 010305
[11] Braunstein S L and Loock P 2005 Rev. Mod. Phys. 77 513
[12] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[13] Sasaki T, Yamamoto Y and Koashi M 2014 Nature 509 475
[14] Zhang Z, Yuan X, Cao Z and Ma X F 2015 arXiv: 1505.02481v1 [quant-ph]
[15] Mizutani A, Imoto N and Tamaki K 2015 Phys. Rev. A 92 060303
[16] Zhang Y Y, Bao W S, Zhou C, Li H W, Wang Y and Jiang M S 2016 Opt. Express 24 20763
[17] Guan J Y, Cao Z and Liu Y 2015 Phys. Rev. Lett. 114 180502
[18] Li Y H, Cao Y, Dai H and Lin J 2015 arXiv: 1505.08142v1 [quant-ph]
[19] Takesue H, Sasaki T, Tamaki K and Koashi M 2015 Nat. Photon. 9 827
[20] Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832
[21] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Inform. Comput. 4 325
[22] Waks E, Takesue H and Yamanoto Y 2006 Phys Rev. A 73 012344
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!