Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 124212    DOI: 10.1088/1674-1056/26/12/124212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Plasmonically induced reflection in metal-insulator-metal waveguides with two silver baffles coupled square ring resonator

Zhi-Dong Zhang(张志东)1,2, Lian-Jun Ma(马连俊)2, Fei Gao(高飞)4, Yan-Jun Zhang(张彦军)1,2, Jun Tang(唐军)1,2, Hui-Liang Cao(曹慧亮)1,2, Bin-Zhen Zhang(张斌珍)1,2, Ji-Cheng Wang(王继成)3, Shu-Bin Yan(闫树斌)1, Chen-Yang Xue(薛晨阳)1,2
1. Science and Technology on Electronic Test & Measurement Laboratory, North University of China, Taiyuan 030051, China;
2. School of Instrument and Electronics, North University of China, Taiyuan 030051, Chin;
3. School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Jiangnan University, Wuxi 214122, China;
4. Xianyang Office, Xi'an Military Representative Bureau, PLAGF, Xianyang 712000, China
Abstract  A plasmonic waveguide coupled system that is composed of a square ring cavity and a metal-insulator-metal (MIM) waveguide with two silver baffles is proposed. The transmission and reflection properties of the proposed plasmonic system are investigated numerically using the finite element method. The normalized Hz field distributions are calculated to analyze the transmission mode in the plasmonic system. The extreme destructive interference between light mode and dark mode causes plasmonically induced reflection (PIR) window in the transmission spectrum. The PIR window is fitted using the coupled mode theory. The analytical result agrees with the simulation result approximately. In addition, the PIR window can be controlled by adjusting structural parameters and filling different dielectric into the MIM waveguide and the square ring cavity. The results provide a new approach to designing plasmonic devices.
Keywords:  surface plasmon polaritons      plasmonically induced reflection      metal-insulator-metal      finite element method  
Received:  20 April 2017      Revised:  12 July 2017      Accepted manuscript online: 
PACS:  42.79.Gn (Optical waveguides and couplers)  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.90.+m (Other topics in optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605177, 61275166, and 11504139), the National Science Fund for Distinguished Young Scholars, China (Grant No. 61525107), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140167), the Natural Science Foundation of Shanxi Province, China (Grant No. 201601D011008), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China, the Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Shanxi Province, China, and the North University of China Science Fund for Distinguished Young Scholars.
Corresponding Authors:  Hui-Liang Cao, Hui-Liang Cao     E-mail:  caohuiliang@nuc.edu.cn;shubin_yan@nuc.edu.cn

Cite this article: 

Zhi-Dong Zhang(张志东), Lian-Jun Ma(马连俊), Fei Gao(高飞), Yan-Jun Zhang(张彦军), Jun Tang(唐军), Hui-Liang Cao(曹慧亮), Bin-Zhen Zhang(张斌珍), Ji-Cheng Wang(王继成), Shu-Bin Yan(闫树斌), Chen-Yang Xue(薛晨阳) Plasmonically induced reflection in metal-insulator-metal waveguides with two silver baffles coupled square ring resonator 2017 Chin. Phys. B 26 124212

[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Ozbay E 2006 Science 311 189
[3] Chen Z, Song X, Jiao R, Duan G, Wang L and Yu L 2015 IEEE Photon. J. 7 4801408
[4] Chen J J, Li Z, Zou Y J, Deng Z L, Xiao J H and Gong Q H 2013 Plasmon. 8 1627
[5] Ho H P, Yuan W, Wong C L and Lin C 2007 Opt. Commun. 275 491
[6] Ma J Y, Xu C, Liu S J, Zhang D W, Jin Y X, Fan Z X and Shao J D 2009 Chin. Phys. B 18 1029
[7] Lin X S and Huang X G 2008 Opt. Lett. 33 2874
[8] Bian Z Y, Liang R S, Zhang Y J, Yi L X, Lai G and Zhao R T 2015 Chin. Phys. B 24 107801
[9] Smith D D, Lepeshkin N N and Schweinsberg Al 2006 Opt. Commun. 264 163
[10] Kekatpure R D, Barnard E S, Cai W and Brongersma M L 2010 Phys. Rev. Lett. 104 243902
[11] Li B X, Li H J and Zeng L L 2015 IEEE. Photon. J. 7 1
[12] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[13] Jin X R, Lu Y, Zheng H, Lee Y, Rhee J Y, Kim K W and Jang W H 2011 Opt. Commun. 284 4766
[14] Zhu Y, Hu X Y, Yang H and Gong Q H 2014 Sci. Rep. 4 3752
[15] Deng Z L, Dong J W, Wang H Z, Cheng S H and Li J S 2013 AIP Advances 3 032138
[16] Piao X J, Yu S K, Koo S, Lee K and Park N 2011 Opt. Express 19 10907
[17] Han Z H and Bozhevolnyi S I 2011 Opt. Express 19 3251
[18] Wen K H, Hu Y H, Chen L, Zhou J Y, He M, Lei L and Meng Z M 2015 IEEE. Photon. J. 7 1
[19] Yun B F, Hu G H and Cui Y P 2013 Opt. Commun. 305 17
[20] Deng Z L and Dong J W 2013 Opt. Express 17 20291
[21] Shang X J, Li X F, Wang L L, Zhai X, Lin Q, Wang B X, Liu G D, Xia S X and Li Q 2015 Eur. Phys. J. B 88 144
[22] Wang N, Zhang Y D and Yuan P 2011 Chin. Phys. B 20 04420
[23] Nan W, Zhang Y D, Wang J F, Tian H, Wang H, Zhang X N, Zhang J and Yuang P 2009 Acta Phys. Sin. 58 7672(in Chinese)
[24] Vafapour Z and Zakery A 2016 Plasmonics 11 609
[25] Li H J, Zhai X and Wang L L 2015 Appl. Phys. Express 8 092201
[26] Asgari S and Granpayeh N 2017 J. Nanophoton. 11 026012
[27] Haus H A and Huang W 1991 Proc. IEEE 79 1505
[28] Li Q, Wang T, Su Y, Yan M and Qiu M 2010 Opt. Express 18 8367
[29] Gai H, Wang J and Tian Q 2007 Appl. Opt. 46 2229
[30] Xu Q, Sandhu S, Povinelli M L, Shakya J, Fan S H and Lipson M 2006 Phys. Rev. Lett. 96 123901
[31] Lai G, Liang R S, Zhang Y J, Bian Z Y, Yi L X, Zhan G Z and Zhao R T 2015 Opt. Express 23 6554
[32] TangY, Zhang Z D, Wang R B, Hai Z Y, Xue C Y, Zhang W D and Yan S B 2017 Sensors 17 784
[1] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[4] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[5] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[6] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[7] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[8] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[9] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[10] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[11] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[12] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[13] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[14] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[15] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
No Suggested Reading articles found!