Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 124203    DOI: 10.1088/1674-1056/26/12/124203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High efficiency terahertz diffraction grating with trapezoidal elements

Yin-Zhong Wu(巫殷忠)1,2, Quan-Pin Fan(范全平)2, Qiang-Qiang Zhang(张强强)2, Lai Wei(魏来)1,2, Yong Chen(陈勇)2, Zu-Hua Yang(杨祖华)2, Lei-Feng Cao(曹磊峰)1,2
1. Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang 621900, China;
2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  A newly designed grating used in terahertz region is proposed, which is composed of the trapezoidal elements repeated successively along one dimension of the substrate, and uniform interval (the grating period) repeated along the other dimension. The transmission of the grating owns a designable trapezoidal profile dependent on the geometric dimensions of the element. The far-field diffraction patterns of a designed grating at incident broadband terahertz frequencies, with element dimensions of upper, lower side and period of 50, 250, and 300 μm, respectively, are simulated by the scalar diffraction theory. The simulation results indicate that the terahertz grating exhibits a property of single-order diffraction, and the diffraction efficiency of the first order reaches 6.6%, exceeding that of a traditional sinusoidal amplitude grating with identical period and duty cycle. Owing to the regular architecture and the high single-order diffraction efficiency, the grating is easy to fabricate and shows great potential applications in single-shot spectral measurements of weak broadband terahertz pulse.
Keywords:  grating      terahertz      trapezoidal element      high efficiency  
Received:  19 May 2017      Revised:  01 September 2017      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  07.57.Pt (Submillimeter wave, microwave and radiowave spectrometers; magnetic resonance spectrometers, auxiliary equipment, and techniques)  
  07.57.Ty (Infrared spectrometers, auxiliary equipment, and techniques)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB05033) and the National Science Instruments Major Project of China (Grant No. 2012YQ130125).
Corresponding Authors:  Zu-Hua Yang     E-mail:  yangzuhua@caep.cn

Cite this article: 

Yin-Zhong Wu(巫殷忠), Quan-Pin Fan(范全平), Qiang-Qiang Zhang(张强强), Lai Wei(魏来), Yong Chen(陈勇), Zu-Hua Yang(杨祖华), Lei-Feng Cao(曹磊峰) High efficiency terahertz diffraction grating with trapezoidal elements 2017 Chin. Phys. B 26 124203

[1] Wu Q, Litz M and Zhang X C 1996 Appl. Phys. Lett. 68 2924
[2] Kono S, Tani M and Sakai K 1996 Appl. Phys. Lett. 79 898
[3] Maussang K, Palomo J, Manceau J M, Colombelli R, Sagnes I, Li L H, Linfield E H, Davies A G, Mangeney J, Tignon J and Dhillon S S 2017 Appl. Phys. Lett. 110 141102
[4] Van Tilborg J, Schroeder C B and Filip C V 2006 Phys. Rev. Lett. 96 014801
[5] Jin Z, Zhuo H B, Nakazawa T, Shin J H, Wakamatsu S, Yugami N, Hosokai T, Zou D B, Yu M Y, Sheng Z M and Kodama R 2016 Phys. Rev. E 94 033206
[6] Alexander S, Alfred L and Rupert H 2008 Opt. Lett. 33 2767
[7] Ding W J and Sheng Z M 2016 Phys. Rev. E 93 063204
[8] Delsim-Hashemi H, Rossbach J and Schmuser P 2006 Proceedings of FEL 2006, Berlin, Germany, p. 594
[9] Wu Y Z, Zhao Z Q, Gu Y Q, Wei L and Cao L F 2014 Chin. Phys. B 23 125202
[10] Fan Q P, Liu Y W, Wang C K, Yang Z H, Wei L, Zhu X L, Xie C Q, Zhang Q Q, Qian F, Yan Z Y, Gu Y Q, Zhou W M, Jiang G and Cao L F 2015 Opt. Lett. 40 2657
[1] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[8] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[9] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[10] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[11] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[12] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[13] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[14] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[15] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
No Suggested Reading articles found!