ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Two-dimensional thermal illusion device with arbitrary shape based on complementary media |
Ge Xia(夏舸), Wei Kou(寇蔚), Li Yang(杨立), Yong-Cheng Du(杜永成) |
Department of Power Engineering, Naval University of Engineering, Wuhan 430033, China |
|
|
Abstract On the basis of transformation thermodynamics and compensation medium theory, we develop a method to design a two-dimensional thermal illusion device with arbitrary shape, and the general expression of thermal conductivity in the each region is obtained. Simulation results show that when an object is covered with the thermal illusion device, it will accurately perform the same temperature distribution signature as another object we have predetermined. Owing to the property of deceiving and interfering with the observer, the thermal illusion device can achieve generalized thermal stealth by using thermal metamaterials, which may have a potential application in military field.
|
Received: 11 April 2017
Revised: 01 June 2017
Accepted manuscript online:
|
PACS:
|
44.10.+i
|
(Heat conduction)
|
|
05.70.-a
|
(Thermodynamics)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
07.05.Tp
|
(Computer modeling and simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504426) and the National Defense Foundation of China (Grant No. 1010502020202). |
Corresponding Authors:
Li Yang
E-mail: yangli123123@126.com
|
Cite this article:
Ge Xia(夏舸), Wei Kou(寇蔚), Li Yang(杨立), Yong-Cheng Du(杜永成) Two-dimensional thermal illusion device with arbitrary shape based on complementary media 2017 Chin. Phys. B 26 104403
|
[1] |
Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
|
[2] |
Pendry J B, Schurig D and Smith D R 2006 Opt. Express 14 9794
|
[3] |
Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
|
[4] |
Chen T Y, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103
|
[5] |
Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
|
[6] |
Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
|
[7] |
Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901
|
[8] |
Mao F C, Li T H, Huang M, Yang J J and Chen J C 2014 Acta Phys. Sin. 63 014401(in Chinese)
|
[9] |
Xia G, Yang L, Kou W and Du Y C 2017 Acta Phys. Sin. 66 104401(in Chinese)
|
[10] |
Yang T Z, Vemuri K P and Bandaru P R 2014 Appl. Phys. Lett. 105 083908
|
[11] |
Yang T Z, Wu Q H, Xu W K, Liu D, Huang L J and Chen F 2016 Phys. Lett. A 380 965
|
[12] |
Xia G, Yang L, Kou W and Du Y C 2017 Acta Phys. Sin. 66 114401(in Chinese)
|
[13] |
Shen X Y, Li Y, Jiang C R, Ni Y S and Huang J P 2016 Appl. Phys. Lett. 109 031907
|
[14] |
Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
|
[15] |
Peralta I, Fachinotti V D and Ciarbonetti Á A 2017 Sci. Rep. 7 40591
|
[16] |
Guenneau S and Amra C 2013 Opt. Express 21 6578
|
[17] |
Kadic M, Bückmann T, Schittny R and Wegener M 2013 Rep. Prog. Phys. 76 126501
|
[18] |
Dede E M, Nomura T, Schmalenberg P and Lee J S 2013 Appl. Phys. Lett. 103 063501
|
[19] |
Chen Y X, Shen X Y and Huang J P 2015 Eur. Phys. J. Appl. Phys. 70 20901
|
[20] |
He X and Wu L Z 2014 Appl. Phys. Lett. 105 221904
|
[21] |
Shen X Y, Chen Y X and Huang J P 2016 Commun. Theor. Phys. 65 375
|
[22] |
Han T C, Bai X, Thong J T L, Li B W and Qiu C W 2014 Adv. Mater. 26 1731
|
[23] |
Yang T Z, Bai X, Gao D L, Wu L Z, Li B W, Thong J T L and Qiu C W 2015 Adv. Mater. 27 7752
|
[24] |
Yang T Z, Su Y, Xu W K and Yang X D 2016 Appl. Phys. Lett. 109 121905
|
[25] |
Lai Y, Chen H Y, Zhang Z Q and Chan C T 2009 Phys. Rev. Lett. 102 093901
|
[26] |
Rohsenow W M 1985 Handbook of heat transfer fundamentals (Los Angeles:McGraw-Hill Education) pp. 1-2
|
[27] |
Holman J P 2011 Heat Transfer, 10th edn. (Singapore:McGraw-Hill Education) pp. 2-5
|
[28] |
Yang T Z, Huang L J, Chen F and Xu W K 2013 J. Phys. D:Appl. Phys. 46 305102
|
[29] |
Li L, Huo F F, Zhang Y M, Chen Y and Liang C H 2013 Opt. Express 21 9422
|
[30] |
Shen X Y and Huang J P 2014 Int. J. Heat Mass Transfer 78 1
|
[31] |
Yuan X B, Lin G C and Wang Y S 2016 Mod. Phys. Lett. B 30 1650256
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|