Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 104403    DOI: 10.1088/1674-1056/26/10/104403
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Two-dimensional thermal illusion device with arbitrary shape based on complementary media

Ge Xia(夏舸), Wei Kou(寇蔚), Li Yang(杨立), Yong-Cheng Du(杜永成)
Department of Power Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract  On the basis of transformation thermodynamics and compensation medium theory, we develop a method to design a two-dimensional thermal illusion device with arbitrary shape, and the general expression of thermal conductivity in the each region is obtained. Simulation results show that when an object is covered with the thermal illusion device, it will accurately perform the same temperature distribution signature as another object we have predetermined. Owing to the property of deceiving and interfering with the observer, the thermal illusion device can achieve generalized thermal stealth by using thermal metamaterials, which may have a potential application in military field.
Keywords:  transformation thermodynamics      compensation medium      thermal illusion device      temperature distribution  
Received:  11 April 2017      Revised:  01 June 2017      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  05.70.-a (Thermodynamics)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504426) and the National Defense Foundation of China (Grant No. 1010502020202).
Corresponding Authors:  Li Yang     E-mail:  yangli123123@126.com

Cite this article: 

Ge Xia(夏舸), Wei Kou(寇蔚), Li Yang(杨立), Yong-Cheng Du(杜永成) Two-dimensional thermal illusion device with arbitrary shape based on complementary media 2017 Chin. Phys. B 26 104403

[1] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Pendry J B, Schurig D and Smith D R 2006 Opt. Express 14 9794
[3] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[4] Chen T Y, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103
[5] Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
[6] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[7] Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901
[8] Mao F C, Li T H, Huang M, Yang J J and Chen J C 2014 Acta Phys. Sin. 63 014401(in Chinese)
[9] Xia G, Yang L, Kou W and Du Y C 2017 Acta Phys. Sin. 66 104401(in Chinese)
[10] Yang T Z, Vemuri K P and Bandaru P R 2014 Appl. Phys. Lett. 105 083908
[11] Yang T Z, Wu Q H, Xu W K, Liu D, Huang L J and Chen F 2016 Phys. Lett. A 380 965
[12] Xia G, Yang L, Kou W and Du Y C 2017 Acta Phys. Sin. 66 114401(in Chinese)
[13] Shen X Y, Li Y, Jiang C R, Ni Y S and Huang J P 2016 Appl. Phys. Lett. 109 031907
[14] Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
[15] Peralta I, Fachinotti V D and Ciarbonetti Á A 2017 Sci. Rep. 7 40591
[16] Guenneau S and Amra C 2013 Opt. Express 21 6578
[17] Kadic M, Bückmann T, Schittny R and Wegener M 2013 Rep. Prog. Phys. 76 126501
[18] Dede E M, Nomura T, Schmalenberg P and Lee J S 2013 Appl. Phys. Lett. 103 063501
[19] Chen Y X, Shen X Y and Huang J P 2015 Eur. Phys. J. Appl. Phys. 70 20901
[20] He X and Wu L Z 2014 Appl. Phys. Lett. 105 221904
[21] Shen X Y, Chen Y X and Huang J P 2016 Commun. Theor. Phys. 65 375
[22] Han T C, Bai X, Thong J T L, Li B W and Qiu C W 2014 Adv. Mater. 26 1731
[23] Yang T Z, Bai X, Gao D L, Wu L Z, Li B W, Thong J T L and Qiu C W 2015 Adv. Mater. 27 7752
[24] Yang T Z, Su Y, Xu W K and Yang X D 2016 Appl. Phys. Lett. 109 121905
[25] Lai Y, Chen H Y, Zhang Z Q and Chan C T 2009 Phys. Rev. Lett. 102 093901
[26] Rohsenow W M 1985 Handbook of heat transfer fundamentals (Los Angeles:McGraw-Hill Education) pp. 1-2
[27] Holman J P 2011 Heat Transfer, 10th edn. (Singapore:McGraw-Hill Education) pp. 2-5
[28] Yang T Z, Huang L J, Chen F and Xu W K 2013 J. Phys. D:Appl. Phys. 46 305102
[29] Li L, Huo F F, Zhang Y M, Chen Y and Liang C H 2013 Opt. Express 21 9422
[30] Shen X Y and Huang J P 2014 Int. J. Heat Mass Transfer 78 1
[31] Yuan X B, Lin G C and Wang Y S 2016 Mod. Phys. Lett. B 30 1650256
[1] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[2] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[3] Flow characteristics of supersonic gas passing through a circular micro-channel under different inflow conditions
Guang-Ming Guo(郭广明), Qin Luo(罗琴), Lin Zhu(朱林), Yi-Xiang Bian(边义祥). Chin. Phys. B, 2019, 28(6): 064702.
[4] Three-dimensional thermal illusion devices with arbitrary shape
Xingwei Zhang(张兴伟), Xiao He(何晓), Linzhi Wu(吴林志). Chin. Phys. B, 2019, 28(6): 064403.
[5] Thermal analysis of GaN-based laser diode mini-array
Jun-Jie Hu(胡俊杰), Shu-Ming Zhang(张书明), De-Yao Li(李德尧), Feng Zhang(张峰), Mei-Xin Feng(冯美鑫), Peng-Yan Wen(温鹏雁), Jian-Pin Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉). Chin. Phys. B, 2018, 27(9): 094208.
[6] Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2018, 27(8): 085205.
[7] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[8] Efficient thermal analysis method for large scale compound semiconductor integrated circuits based on heterojunction bipolar transistor
Shi-Zheng Yang(杨施政), Hong-Liang Lv(吕红亮), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门), Bin Lu(芦宾), Si-Lu Yan(严思璐). Chin. Phys. B, 2018, 27(10): 108101.
[9] Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes
Ming-Can Qian(钱明灿), Shu-Fang Zhang(张淑芳), Hai-Jun Luo(罗海军), Xing-Ming Long(龙兴明), Fang Wu(吴芳), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Fan-Ming Meng(孟凡明), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2017, 26(10): 104402.
[10] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[11] An RLC interconnect analyzable crosstalk model considering self-heating effect
Zhu Zhang-Ming(朱樟明) and Liu Shu-Bin(刘术彬) . Chin. Phys. B, 2012, 21(2): 028401.
[12] Determination of temperature distribution and control parameter in a two-dimensional parabolic inverse problem with overspecified data
Li Fu-Le(李福乐) and Zhang Hong-Qian(张洪谦) . Chin. Phys. B, 2011, 20(10): 100201.
[13] A novel analytical thermal model for multilevel nano-scale interconnects considering the via effect
Zhu Zhang-Ming(朱樟明),Li Ru(李儒), Hao Bao-Tian(郝报田), and Yang Yin-Tang(杨银堂) . Chin. Phys. B, 2009, 18(11): 4995-5000.
[14] Simulation study on reconstruction model of three-dimensional temperature distribution within visible range in furnace
Liu Dong(刘冬), Wang Fei(王飞), Huang Qun-Xing(黄群星), Yan Jian-Hua(严建华), Chi Yong(池涌), and Cen Ke-Fa(岑可法). Chin. Phys. B, 2008, 17(4): 1312-1317.
[15] Calculation of the heat deposition and temperature distribution of the target bombarded by high-energy protons using Monte Carlo simulation and finite element method
Yin Wen (殷雯), Zhang Guo-Feng (张国锋), Du Jian-Hong (杜建红), Liang Jiu-Qing (梁九卿). Chin. Phys. B, 2003, 12(12): 1383-1385.
No Suggested Reading articles found!